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Deformation of Microchannels
Embedded in an Elastic Medium
The deformation of microfluidic channels in a soft elastic medium has a central role in
the operation of lab-on-a-chip devices, fluidic soft robots, liquid metal (LM) electronics,
and other emerging soft-matter technologies. Understanding the influence of mechanical
load on changes in channel cross section is essential for designing systems that either
avoid channel collapse or exploit such collapse to control fluid flow and connectivity. In
this paper, we examine the deformation of microchannel cross sections under far-field
compressive stress and derive a “gauge factor” that relates externally applied pressure
with change in cross-sectional area. We treat the surrounding elastomer as a Hookean
solid and use two-dimensional plane strain elasticity, which has previously been shown to
predict microchannel deformations that are in good agreement with experimental measure-
ments. Numerical solutions to the governing Lam�e (Navier) equations are found to match
both the analytic solutions obtained from a complex stress function and closed-form alge-
braic approximations based on linear superposition. The application of this theory to soft
microfluidics is demonstrated for several representative channel geometries.
[DOI: 10.1115/1.4040477]

1 Introduction

Microfluidic systems for lab-on-a-chip diagnostics, biomaterials
printing, and pathogen detection have had a transformative impact
on medicine and biotechnology [1–4]. These devices are typically
composed of microfluidic channels embedded in soft elastic mate-
rials and are produced using “soft lithography” fabrication techni-
ques [5–7]. In recent years, soft microfluidic architectures have
also been used for stretchable electronics with liquid metal (LM)
[8–10], organ-on-a-chip tissue engineering [11,12], and fluid-
powered soft robotics [13,14]. In most of these applications, the
mechanical deformation of the embedded microfluidic channels
and surrounding elastic medium are strongly coupled—leading to
elasto-mechanical dependencies that can significantly influence
device operation. Understanding the mechanics of these interac-
tions is essential for developing predictive modeling tools that can
inform the design and operation of soft microfluidic systems.

In many applications, elasto-mechanical coupling is an unde-
sired consequence of using soft materials that can interfere with
device functionality or performance. This is particularly true with
stretchable electronics that use microfluidic LM wiring for soft,
stretchable, and elastic circuits. For these circuits, microchannel
deformation typically causes the electrical resistance to increase
and can alter the passive electronic properties of the circuit [15].
However, in some cases, elasto-mechanical coupling can be
exploited to achieve unique functionalities that are not possible
with a rigid device. This includes microfluidic “Quake” valves
[16], LM pressure sensors and strain gauges [17–20], fluidic
actuation [13,14], and pressure-controlled microfluidics that filter
or capture nanoparticles [21,22] (Fig. 1(a)). In general, a theoreti-
cal model that relates the deformation of the microchannel and
surrounding elastomer can inform device operation and enable the
system to be designed in a way to either enhance or mitigate this
coupling.

This paper presents theories that relate the influence of far-field
stress on the deformation of a microchannel embedded within a
soft elastic medium (Fig. 1(b)). Solutions are obtained for the
cross-sectional geometries shown in Fig. 1(c), which are represen-
tative of the channel shapes typically used in applications. The
elastic medium is treated as a Hookean solid with modulus E and
Poisson’s ratio �. Previously it was shown that theoretical predic-
tions based on Hooke’s law are in strong agreement with experi-
mental measurements for microchannels with rectangular [18] and
triangular [20] cross section. The field equations and numerical
solution method are presented in Sec. 2 along with exact and
approximate analytic solutions based on classical solutions from
the theory of linear elasticity. The numerical, exact, and approxi-
mate solutions are compared in Sec. 3 and shown to be in good
agreement. This is followed by a discussion of how the proposed
model can inform the design of selected systems. The paper closes
with a brief summary of the results and prospects for future pro-
gress within the still nascent field of soft microfluidic mechanics
and modeling (Sec. 4).

2 Theory

A rectangular elastic sheet of dimensions {L1, L2, L3} is embed-
ded with a single microchannel of width w and height h that
extends along its entire depth. Referring to the coordinates in Fig.
1(b), the sheet is subject to compressive pressure p on its top
(X2¼ L2/2) and bottom (X2¼ –L2/2) surfaces. This induces a dis-
placement field u¼ ui(X)Ei and stress r ¼ rijðXÞEi � Ej within
the elastomer. Here, X ¼ XiEi 2 B0; B0 is the natural placement
of the elastic medium in Euclidean space (E), and the indices i, j
� {1, 2, 3} are subject to Einstein summation convention. Assum-
ing plane strain loading, r has components [24]

r11 ¼
E 1� �ð Þu1;1 þ �u2;2

� �
1þ �ð Þ 1� 2�ð Þ r12 ¼ r21 ¼

E u1;2 þ u2;1ð Þ
2 1þ �ð Þ

r22 ¼
E �u1;1 þ 1� �ð Þu2;2

� �
1þ �ð Þ 1� 2�ð Þ r33 ¼

E� u1;1 þ u2;2ð Þ
1þ �ð Þ 1� 2�ð Þ

(1)

r31¼r13¼r32¼ r23¼ 0. Here, the notation f;i ¼ @f=@Xi applies
to functions f : B0 ! R.
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For a linear elastic solid, $ � r ¼ 0 at static equilibrium, where
$ ¼ f@=@XigEi is the Lagrangian (material) nabla operator.3 Let-
ting w ¼ ð1� 2�Þ=2ð1� �Þ and �1¼ �/(1� �), it follows from
Eq. (1) that the balance law can be expressed by the following
pair of partial differential equations:

u1;11 þ �1u2;21 þ wðu1;22 þ u2;12Þ ¼ 0

u2;22 þ �1u1;12 þ wðu1;21 þ u2;11Þ ¼ 0
(2)

The solution to this displacement formulation4 must satisfy the
following boundary conditions:

r � n ¼ t 8X 2 @Bt
0 r � n ¼ 0 8X 2 @B0n@Bt

0 (3)

Here, Bt
0 corresponds to the top and bottom surfaces (X2¼6L2/2)

and t is the prescribed surface traction. In component form, t ¼
7pE2 on X2¼6L2/2.

2.1 Numerical Solution. A numerical solution to the above
boundary value problem is obtained in MATLAB R2015a (The
Mathworks, Inc., Natick, MA) using the pdenonlin function. This
solver uses the method of finite elements in which the domain B0

is converted to a triangular mesh. The finite element matrices are
then generated on the mesh and solved using a damped Gauss-
Newton iteration algorithm. Numerical solutions are obtained for
thin sheets with �¼ 0.49 (i.e., incompressible) and unitless dimen-
sions L1¼ 10 and L2¼ 1 and channels of width w¼ 0.1 and height
h ranging from 0.01 to 0.1. If units of millimeters are selected,
then the selected values are representative of typical microfluidic
systems.

The governing equations in (2) are imported into pdenonlin as a
system of elliptic partial differential equations with the general
form

r � ðC : ruÞ ¼ auþ f (4)

where C, a, and f are fourth-, second-, and first-order tensors,
respectively. For the current problem, r ¼ ð@=@X1ÞE1

þð@=@X2ÞE2; a ¼ f ¼ 0, and C ¼ CijklEi � Ej � Ek � El. From
Eq. (2), it follows that

C1111 ¼ C2222 ¼ 1 C1122 ¼ C2211 ¼ �1

C1212 ¼ C1221 ¼ C2112 ¼ C2121 ¼ w
(5)

and the remaining elements of C are zero. In MATLAB, C is
imported as a column vector of character strings with elements (1,
0, 0, w, 0, w, �1, 0, 0, �1, w, 0, w, 0, 0, 1). Likewise, the boundary
conditions in Eq. (3) must be expressed as

ðC : ruÞ � nþ qu ¼ g (6)

where q is a second-order tensor and g is the prescribed surface
traction. Here, q¼ 0 and

g ¼
t̂ 8X 2 @Bt

0

0 8X 2 @B0n@Bt
0

(
(7)

where the nondimensional traction can be expressed as

t̂ ¼ 7
1þ �ð Þ 1� 2�ð Þp

1� �ð ÞE
E2 (8)

for X2¼6L2/2. For convenience, we will also define a normalized
surface pressure p̂ ¼ p=E. As shown next, the normalized surface
pressure p̂ will also be useful in calculating the gauge factor that
relates applied pressure with the change in cross-sectional area
DA of the microchannel.

The cross-sectional area of the microchannel is determined by
using Green’s theorem

A ¼ 1

2

þ
C

xc dyc � yc dxcf g (9)

Here, the contour C represents the space curve formed by the
microchannel boundary in the natural placement (undeformed
configuration). The coordinates (xc, yc) are obtained from the

Fig. 1 (a) Examples of soft microfluidics for emerging applications: (i) Quake valve (reproduced with permission from Unger
et al. [16] Copyright 2000 by AAAS), (ii) fluidic soft robot (reproduced with permission from Wehner et al. [14] Copyright 2016
by Springer Nature), (iii) LM electronics (reproduced with permission from Ozutemiz et al. [23] Copyright 2018 by Wiley—VCH
Verlag GmbH & Co. KGaA), and (iv) tunable nanoparticle filtration (reproduced with permission from Huh et al. [21] Copyright
2007 by Springer Nature). (b) Soft microfluidic channel modeled as a prismatic opening embedded inside of an elastic sheet
subject to surface pressure p. (c) Selected channel cross section, which is representative of geometries typically used in soft
microfluidics.

3It should be noted that for problems in which large deformations are anticipated
(finite elasticity), the elastic medium should be treated as a hyperelastic solid with an
internal Cauchy stress that is divergence free in the spatial description, i.e., use the
Eulerian nabla operator for r.

4Also known as Navier’s or Lam�e’s equations.
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deformation mapping x¼Xþ u for points Xc 2 C. In parametric
form, Xc

a ¼ Xc
aðtÞ for a � {1, 2}, where t can be an arclength along

the boundary or angle defined with respect to the X1 axis. The
parameter t must increase when moving along C in the counter-
clockwise direction.5 In discrete form where t is an array of length
n, the contour is discretized by points xc

i ¼ ðX1Þci þ u1ðXC
i Þ and

yc
i ¼ ðX2Þci þ u2ðXc

i Þ, where ðXaÞci ¼ Xc
aðtiÞ and i � {1,…, n}. The

area is calculated as

A ¼ 1

2

Xn

i¼2

xc
i Dyc

i � yc
i Dxc

i

� �
(10)

where Dxc
i ¼ xc

i � xc
i�1 and Dyc

i ¼ yc
i � yc

i�1. Finally, the gauge
factor corresponds to the ratio of the relative change in cross-
sectional area DA/A0 and normalized pressure

G ¼ lim
p!0

1

p̂
1� A

A0

� �
(11)

In soft microfluidics, the parameter G is an important metric for
elasto-mechanical coupling that relates the “sensitivity” of the
microchannel geometry to an applied surface traction.

2.2 Analytic Solution. As with other classes of problems in
two-dimensional (2D) linear elasticity, an analytic solution to the
above boundary value problem can be obtained using complex
analysis. This involves replacing the coordinates (x1, x2) within
the elastic media by a complex variable, z¼ x1þ ix2. Using the
Kolosov-Muskhelishvili formulae [24,25], the stress and displace-
ment fields can be expressed in terms of analytic complex stress
potential functions /(z), w(z)

r11 þ r22 ¼ 2½/01ðzÞ þ /01ðzÞ�
r22 � r11 þ 2ir12 ¼ 2½z/001ðzÞ þ w01ðzÞ�

2lðu1 þ iu2Þ ¼ j/ðzÞ � z/0ðzÞ � wðzÞ
(12)

where j ¼ 3� 4�; z; /ðzÞ, and wðzÞ are the complex conjugates
of z, /(z), and w(z), respectively. The prime in Eq. (12) denotes
the derivative with respect to z.

To find the displacement field around holes in an infinite media,
a conformal transformation z¼x(f), is employed to map the
region in B0 outside the hole, from the z plane to the interior of a
unit circle in the f plane

2l u1 þ iu2ð Þ ¼ j/ fð Þ � x fð Þ
x0 fð Þ

/0 fð Þ � w fð Þ (13)

where wðfÞ ¼ w8xðfÞ and /ðfÞ ¼ /8xðfÞ. The mapping function
xðfÞ takes the general form [26]

x fð Þ ¼ R
1

f
þ
X1
k¼1

mkf
2k�1

" #
(14)

Here, R is a scaling factor that depends upon the dimensions of
the hole geometry. Since the series in Eq. (14) converges
rapidly, we truncate the expression to three terms. For an ellipse
of dimensions (a, b), m1 ¼ ða� bÞ=ðaþ bÞ; m2 ¼ 0; m3 ¼ 0, and
for a rectangle of dimensions (w, h), m1 ¼ ðaþ aÞ=
2; m2 ¼ ða� aÞ2=24; m3 ¼ fða2 � a2Þða� aÞg=80, where a ¼
e2ikp and k ¼ 0:068 logð38:314 � h=wÞ.

As reported in Ref. [25], the stress potential functions
f/ðfÞ;wðfÞg can each be resolved into the pair of functions

/1 fð Þ ¼ p x fð Þ
4

w1 fð Þ ¼ p x fð Þ
2

(15)

and the following pair of holomorphic functions in the region
jfj < 1:

/0ðfÞ ¼
X1
n¼1

anf
n

w0ðfÞ ¼
X1
n¼0

bnf
n

(16)

The expressions for /(f) and w(f) are found by applying
Cauchy integrals to the derived boundary conditions on the con-
tour c of the fictitious hole in the parametric f-plane and solving
the resulting pair of equations [27]

/0 fð Þ þ 1

2pi

ð
c

x rð Þ
x0 rð Þ

/00 rð Þ
r� f

dr ¼ 1

2pi

ð
c

f 0
1 þ if 0

2

r� f
dr

w0 fð Þ þ 1

2pi

ð
c

x rð Þ
x0 rð Þ

/00 rð Þ
r� f

dr ¼ 1

2pi

ð
c

f 0
1 � if 0

2

r� f
dr

(17)

The derived boundary conditions for the basic stress state of this
medium are [25]

f 0
1 þ if 0

2 ¼
pR

2
x fð Þ þ x fð Þ
h i

f 0
1 � if 0

2 ¼
pR

2
x fð Þ þ x fð Þ
h i (18)

As an example, the stress potential functions for an ellipse
f/eðfÞ;weðfÞg and a rectangle f/rðfÞ;wrðfÞg of aspect ratio
h=w ¼ b=a ¼ 0:5 are given by

/e fð Þ ¼ p̂R
1

4f
� 0:583f

� �

we fð Þ ¼ p̂R
1

2f
þ 1:5fþ 6:67f

f2 � 3

� � (19)

and

/r fð Þ ¼ p̂R
1

4f
� 0:486fþ 0:0382f3

� �

wr fð Þ ¼ p̂R
1

2f
� 0:773f3 þ 1:332f

0:918f4 � 0:574f2 þ 2

 ! (20)

respectively. The equations in (19) match those provided in previ-
ous studies [28].

Finally, the displacement field is obtained by substituting Eqs.
(14), (19), and (20) into Eq. (13). The area of the hole is numeri-
cally determined by importing the vector of contour points into
the polyarea function in MATLAB 2016b. The gauge factor is calcu-
lated by G ¼ ð1� A=A0Þ=p̂. As discussed in Sec. 3, the values of
A/A0 and G are plotted in Figs. 2 and 3 and compared with the
numerical and approximate analytic solutions.

2.3 Approximate Solution. The displacement field u : B0 ! B,
microchannel area A, and gauge factor G can be approximated by
adapting solutions from classical problems in linear elasticity. As
shown in Sec. 3, these closed-form approximations are found to
be in reasonable agreement with the numerical and exact analytic
solutions and can be useful for establishing design and operational
guidelines for soft microfluidic systems.

2.3.1 Elliptical Cross Section. We begin with the deformation
of the elliptical cross section shown in Fig. 1(c). This can be deter-
mined by first examining the deformation of a circular cross sec-
tion of radius R0 under pressure p0 such that the channel deforms
into an ellipse with principle axes a and b (along the E1 and E2

5Otherwise, the coefficient 1/2 in Eq. (9) should be replaced with –1/2.
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directions, respectively). By linear superposition, the deformation
of this ellipse under a surface traction p is equal to the deforma-
tion of a circular channel of radius R0 subject to an applied pres-
sure of p0 ¼ p0 þ p. Referring to Fig. 4, this corresponds to
selecting different configurations for the natural (B00) and refer-
ence placements (B0) and decomposing the deformation mapping

v0 ¼ v8v0 into an intermediate mapping v0 : B00 ! B0 and final
mapping v : B0 ! B.

Study of the deformation of a circular hole in an elastic medium
with far-field uniaxial stress is classically known as the Michell
problem [24,25]. For a compressive stress p0, the displacement
field around the hole boundary has components

Fig. 2 (a) Deformation of an elliptical channel with w 5 0.2, h 5 0.1, p 5 0.05, and m 5 0.49:
(gray) initial shape, (markers) numerical solution for deformed shape, (dashed) approximate
solution for deformed shape. (b) Cross-sectional area as a function of normalized pressure:
(circular markers) numerical solution, (dashed) approximate solution, and (solid) analytic
solution. (c) Deformation of a rectangular channel with w 5 0.2, h 5 0.1, p 5 0.05, and m 5 0.49:
(gray) initial shape, (markers) numerical solution for deformed shape, (dashed) approximate
solution for deformed shape. (d) Cross-sectional area as a function of normalized pressure:
(circular markers) numerical solution, (dashed) approximate solution, and (solid) analytic
solution.

Fig. 3 Gauge factor G versus channel aspect ratio a. (a) Circular cross section with a 5 0.1 and varying b: (circular markers)
numerical solution, (solid) analytic solution, (dashed) approximate solution. (b) Rectangular cross section with w 5 0.1 and
varying h: (square markers) numerical solution, (solid) analytic solution, and (dashed) approximate solution. (c) Numerical
solutions for triangular (triangle markers) and diamond-shape (diamond markers) also exhibit a similar monotonic depend-
ency; the dashed line corresponds to a fit of G5 1:2/a.

101004-4 / Vol. 85, OCTOBER 2018 Transactions of the ASME



u1 hð Þ ¼ 2 1þ �ð Þ
E

up0R0 cos h (21)

u2 hð Þ ¼ � 6 1þ �ð Þ
E

up0R0 sin h (22)

where u¼ (kþ 1)/8, k¼ 3� 4�, and the polar coordinate h is
defined with respect to the X1 axis. To achieve an elliptic cross
section with dimensions a¼w/2 and b¼ h/2, the elastic medium
must be deformed such that u1(0)¼ a�R0 and u2(p/2)¼ b�R0.
This implies the following opening radius and surface pressure:

p0 ¼
E 1� að Þ

2u 1þ �ð Þ 3þ að Þ (23)

R0 ¼
w

2
1þ 2 1þ �ð Þup0

E

� ��1

(24)

where a¼ h/w is the aspect ratio.
The final shape of the channel is determined by superposition

xc
1 ¼ R0 cos h 1þ 2u 1þ �ð Þ pþ p0ð Þ

E

� �
(25)

xc
2 ¼ R0 sin h 1� 6u 1þ �ð Þ pþ p0ð Þ

E

� �
(26)

The corresponding cross-sectional area is

A ¼ pR2
0 1þ 2u 1þ �ð Þ pþ p0ð Þ

E

� �
1� 6u 1þ �ð Þ pþ p0ð Þ

E

� �
(27)

and the gauge factor is Ge ¼ ð1� �2Þð9� a2Þ=4a. As would be
expected for a relatively small channel in a large linear elastic
medium, resistance to deformation under a normalized pressure
p/E decreases with an increase in the height-to-width aspect ratio
of the cross section.

2.3.2 Rectangular Cross Section. For a rectangular cross sec-
tion, closed-form algebraic approximations for A/A0 and G can be
obtained by examining the dual case of tensile loading. Under ten-
sion, the final area can be estimated by superposing the area Ae ¼

whð1þ eÞð1� �ð1þ �ÞeÞ under a uniform global (average) strain
e¼ r(1� �2)/E with the increase in area (DA) for a crack opening
under a far-field tension r. The latter is obtained from linear elas-
tic fracture mechanics, by treating the channel cross section as a
narrow slit of width w. Referring to Fig. 4, the vertical displace-
ment of the slit boundary (u2) is obtained for a stress intensity fac-
tor KI ¼ r

ffiffiffiffiffiffiffiffiffiffiffi
pw=2

p
[24,29,30]

u2 ¼
4 1� �2ð ÞKI

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w� 2X1

4p

r
(28)

Integrating over the length of the slit yields DA ¼ 4ð1� �2Þffiffiffi
2
p

rw2=3E. For compression, r is replaced with –p and the posi-
tion of points along the boundary is estimated as

xc ¼ 1þ � 1þ �ð Þ p

E

� �
Xc

1E1 þ 1� 1� �2ð Þ p

E

� �
Xc

2

�

�sgn X2ð Þ
4 1� �2ð Þp

ffiffiffiffi
w
p

2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w

2
� Xc

1

r �
E2 (29)

The final cross-sectional area A¼AeþDA is calculated as

A ¼ wh 1� 1� �2ð Þ p

E

� �
1þ � 1þ �ð Þ p

E

� �

� 4 1� �2ð Þ ffiffiffi2p pw2

3E
(30)

and the gauge factor is

Gp ¼ 1� � � 2�2 þ 4 1� �2ð Þ ffiffiffi2p
3a

(31)

Again, the gauge factor decreases monotonically with increasing
channel aspect ratio. As a gets large, Gp converges to 1� �� 2�2,
which corresponds to the case of uniform strain (A � Ae).

3 Results and Discussion

Numerical and analytic solutions for an elliptical cross section
are presented in Fig. 2 for the following representative parame-
ters: L1¼ 10, L2¼ 1, w¼ 0.2, h¼ 0.1, �¼ 0.49. Figure 2(a) shows
deformation under a normalized surface traction jt̂j ¼ ð1� �2Þp̂
¼ 0:05. The dashed lines correspond to the boundary of the
unloaded state and the solid line corresponds to the numerical
solution for the deformed shape obtained using the steps described
in Sec. 2.1. The numerical solution for channel deformation
appears to be in good agreement with the analytic approximations,
shown as the dash-dot line. As shown in Fig. 2(b), there is also a
reasonable agreement for calculations of the cross-sectional area
as a function of applied pressure (0 � p̂ � 0:1). A comparison for
the case of rectangular cross section is presented in Figs. 2(c) and
2(d).

As shown in Fig. 3, there also appears to be good agreement
between numerical and analytic calculations of the gauge factor
G. For these plots, L1¼ 10, L2¼ 1, �¼ 0.49, and the channel
aspect ratio a ranges from 0.1 to 1. In the case of an elliptical
cross section (Fig. 3(a)), the agreement appears to be close to
exact. Figure 3(b) shows that Eq. (31) is in strong agreement with
the numerical solution for a rectangular channel. As shown in Fig.
3(c), the gauge factor of microchannels with triangular (triangle
markers) and diamond-shaped (diamond markers) cross section
exhibit a similar monotonic dependency on aspect ratio. This can
be accurately captured with the approximation G ¼ 1:2=a, which
appears to be in good agreement with the numerical solutions in
the range of a � [0.1, 1].

Both the numerical and analytic solutions are only valid when
strain is small and the elastomer can be modeled as a linear elastic
solid. For large strains, Hooke’s law should be replaced with a

Fig. 4 (a) The solution to the classical Michell problem of a cir-
cular opening in an elastic plate under far-field stress is used to
estimate the deformation of an elliptical channel with principle
dimensions a and b. (b) The deformation of a rectangular chan-
nel is estimated by superposing uniform deformation of a
homogenous Hookean solid with the opening of a slit under far-
field stress.
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nonlinear constitutive model (Neo-Hookean, Mooney-Rivlin,
Ogden) and Cauchy stress should be balanced in the Eulerian
description (i.e., rE � r ¼ 0). For some cases, pdenonlin can still
be used, but only with a tensor C¼C(u, ru) that accounts for the
stretch and rotation of the material coordinates. Otherwise, a more
general finite element analysis (FEA) program is required.

In the current deformation analysis, it is also assumed that the
walls of the channel do not make contact or interpenetrate. In gen-
eral, the channel will collapse as the surface pressure approaches
E. This is especially true for channels with a low cross-sectional
aspect ratio (a). For such deformations, analysis should also
include a unilateral constraint to prevent interpenetration

9! X1;X2 2 @B0nC : vðX1Þ � vðX2Þ (32)

where again, v is the deformation mapping. The collapse of soft
microfluidic channels under elastomer compression has previously
been modeled using commercial FEA packages. This includes
rectangular and triangular channels as well as triangular channels
embedded with rigid spherical beads. While pressure-induced
channel collapse is undesirable for LM circuits and sensors, it is
central to the operation of soft microfluidic valves and particle fil-
tration networks.

Hydrostatic pressure (ph) within the microfluidic channel can
typically be ignored when surface pressure is concentrated over a
small portion of the channel. For such cases, the reduction in
internal volume from localized elastomer deformation is compen-
sated by an equal increase distributed over a much larger volume
(away from where pressure is applied). The latter requires
only modest tractions on the channel wall and the corresponding
hydrostatic pressure is expected to be small compared to the
concentrated surface pressure. For cases when ph is significant,
Eq. (3)2 should be replaced with the boundary condition
r � n ¼ �phn 8X 2 @B0n@Bt

0. Likewise, analytic estimates may
be obtained by superposing the approximations above with solu-
tions for the case when traction is only applied on the channel
walls.

The theoretical results and approximate models presented here
have the potential to inform the choice of materials, designs, and
operational conditions for a variety of soft microfluidic systems.
In particular, we find that the gauge factor generally ranges from
	1 to 10 for typical cross-sectional geometries. Therefore, in
order for soft microfluidic systems to be resistant to collapse under
applied pressure, the elastic modulus of the elastomer should be at
least 100
 greater than the maximum anticipated pressures. Alter-
natively, microfluidic channels that are designed to collapse under
pressure should be embedded in an elastomer with a modulus that
is approximately equal or 1/10th smaller in magnitude. This is
especially useful in designing microfluidic channels for sensing,
valving, or tunable particle filtration. For example, a circular
channel (a¼ b) filled with ionically conductive fluid or liquid
metal embedded in an incompressible elastomer has a gauge fac-
tor of 1.64. Based on Ohm’s law, i.e., DR/R0¼ (1þDA/A0)�1� 1,
this implies that the electrical resistance R will increase by 50% if
a pressure p¼ 0.2E is applied.

Finally, although only elastomer sheets with a single channel
are modeled, the numerical approach can easily be extended to
multiple embedded channels. For the case when channels are
sparsely distributed (i.e., center-to-center spacing� channel
width), the solutions based on single channel deformation are
expected to provide a reasonable approximation. This is because
the influence of the channel on the internal strain field is highly
localized and expected to have only modest influence on the
mechanics of neighboring inclusions.

4 Conclusion

The compression of microchannels in an elastic medium has
important implications in the design and operation of soft micro-
fluidic systems. Of particular interest is the gauge factor G that

relates the relative change in channel area (DA/A0) with the nor-
malized pressure (p/E) exerted on the surface of the surrounding
elastomer. For the case of rectangular and elliptical cross section,
there is good agreement between closed-form analytic approxima-
tions based on classical solutions in 2D elasticity with numerical
solutions to the governing Lam�e equations. In the case of a
pressure-controlled microfluidic valve, filter, or sensor, the
approximations can be useful for selecting material stiffness and
channel aspect ratio for an anticipated range of pressures.

The numerical method presented here is applicable for examin-
ing small deformation of any prismatic channel geometry, including
triangle, diamond, and other polygon-shaped cross section. For
larger deformations, the theory must be modified to account for
finite elastic deformation and unilateral contact between channel
walls (i.e., collapse). Three-dimensional FEA modeling is required
for accurate modeling of more general microfluidic networks with
multiple channels and nonprismatic geometries. However, even for
these general systems, the approximations presented here can help
guide channel design and materials selection.

Acknowledgment

This work was supported by an Office of Naval Research BRC
(Bio-Inspired Autonomous Systems, Dr. Tom McKenna).

Funding Data

� Office of Naval Research (N00014-7-1-2063).

References
[1] Stone, H. A., Stroock, A. D., and Ajdari, A., 2004, “Engineering Flows in Small

Devices: Microfluidics Toward a Lab-on-a-Chip,” Annu. Rev. Fluid Mech.,
36(1), pp. 381–411.

[2] Squires, T. M., and Quake, S. R., 2005, “Microfluidics: Fluid Physics at the
Nanoliter Scale,” Rev. Mod. Phys., 77(3), p. 977.

[3] Whitesides, G. M., 2006, “The Origins and the Future of Microfluidics,”
Nature, 442(7101), pp. 368–373.

[4] Sackmann, E. K., Fulton, A. L., and Beebe, D. J., 2014, “The Present and
Future Role of Microfluidics in Biomedical Research,” Nature, 507(7491), pp.
181–189.

[5] Xia, Y., and Whitesides, G. M., 1998, “Soft Lithography,” Annu. Rev. Mater.
Sci., 28(1), pp. 153–184.

[6] Quake, S. R., and Scherer, A., 2000, “From Micro-to Nanofabrication With
Soft Materials,” Science, 290(5496), pp. 1536–1540.

[7] Qin, D., Xia, Y., and Whitesides, G. M., 2010, “Soft Lithography for Micro-and
Nanoscale Patterning,” Nat. Protoc., 5(3), pp. 491–502.

[8] Dickey, M. D., Chiechi, R. C., Larsen, R. J., Weiss, E. A., Weitz, D. A., and
Whitesides, G. M., 2008, “Eutectic Gallium-Indium (Egain): A Liquid Metal
Alloy for the Formation of Stable Structures in Microchannels at Room Tem-
perature,” Adv. Funct. Mater., 18(7), pp. 1097–1104.

[9] Cheng, S., and Wu, Z., 2012, “Microfluidic Electronics,” Lab Chip, 12(16), pp.
2782–2791.

[10] Joshipura, I. D., Ayers, H. R., Majidi, C., and Dickey, M. D., 2015, “Methods
to Pattern Liquid Metals,” J. Mater. Chem. C, 3(16), pp. 3834–3841.

[11] Huh, D., Kim, H. J., Fraser, J. P., Shea, D. E., Khan, M., Bahinski, A., Hamil-
ton, G. A., and Ingber, D. E., 2013, “Microfabrication of Human Organs-on-
Chips,” Nat. Protoc., 8(11), pp. 2135–2157.

[12] Bhatia, S. N., and Ingber, D. E., 2014, “Microfluidic Organs-on-Chips,” Nat.
Biotechnol., 32, pp. 760–772.

[13] Wakimoto, S., Ogura, K., Suzumori, K., and Nishioka, Y., 2009, “Miniature
Soft Hand With Curling Rubber Pneumatic Actuators,” IEEE International
Conference on Robotics and Automation (ICRA’09), Kobe, Japan, May 12–17,
pp. 556–561.

[14] Wehner, M., Truby, R. L., Fitzgerald, D. J., Mosadegh, B., Whitesides, G. M.,
Lewis, J. A., and Wood, R. J., 2016, “An Integrated Design and Fabrication Strat-
egy for Entirely Soft, Autonomous Robots,” Nature, 536(7617), pp. 451–455.

[15] Kim, H.-J., Son, C., and Ziaie, B., 2008, “A Multiaxial Stretchable Interconnect
Using Liquid-Alloy-Filled Elastomeric Microchannels,” Appl. Phys. Lett.,
92(1), p. 011904.

[16] Unger, M. A., Chou, H.-P., Thorsen, T., Scherer, A., and Quake, S. R., 2000,
“Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lith-
ography,” Science, 288(5463), pp. 113–116.

[17] Whitney, R., 1949, “The Measurement of Changes in Human Limb-Volume by
Means of a Mercury-Inrubber Strain Gauge,” J. Physiol., 109(1–2), p. Proc–5.

[18] Majidi, C., Park, Y.-L., Kramer, R., B�erard, P., and Wood, R. J., 2010,
“Hyperelastic Pressure Sensing With a Liquid-Embedded Elastomer,” J. Micro-
mech. Microeng., 20(12), p. 125029.

[19] Park, Y.-L., Tepayotl-Ramirez, D., Wood, R. J., and Majidi, C., 2012, “Influence
of Cross-Sectional Geometry on the Sensitivity and Hysteresis of Liquid-Phase
Electronic Pressure Sensors,” Appl. Phys. Lett., 101(19), p. 191904.

101004-6 / Vol. 85, OCTOBER 2018 Transactions of the ASME

http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
http://dx.doi.org/10.1103/RevModPhys.77.977
http://dx.doi.org/10.1038/nature05058
http://dx.doi.org/10.1038/nature13118
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
http://dx.doi.org/10.1126/science.290.5496.1536
http://dx.doi.org/10.1038/nprot.2009.234
http://dx.doi.org/10.1002/adfm.200701216
http://dx.doi.org/10.1039/c2lc21176a
http://dx.doi.org/10.1039/C5TC00330J
http://dx.doi.org/10.1038/nprot.2013.137
http://dx.doi.org/10.1038/nbt.2989
http://dx.doi.org/10.1038/nbt.2989
http://dx.doi.org/10.1109/ROBOT.2009.5152259
http://dx.doi.org/10.1038/nature19100
http://dx.doi.org/10.1063/1.2829595
http://dx.doi.org/10.1126/science.288.5463.113
http://dx.doi.org/10.1113/jphysiol.1953.sp004926
http://dx.doi.org/10.1088/0960-1317/20/12/125029
http://dx.doi.org/10.1088/0960-1317/20/12/125029
http://dx.doi.org/10.1063/1.4767217


[20] Tep�ayotl-Ram�ırez, D., Lu, T., Park, Y.-L., and Majidi, C., 2013, “Collapse of
Triangular Channels in a Soft Elastomer,” Appl. Phys. Lett., 102(4), p. 044102.

[21] Huh, D., Mills, K., Zhu, X., Burns, M. A., Thouless, M., and Takayama, S.,
2007, “Tuneable Elastomeric Nanochannels for Nanofluidic Manipulation,”
Nat. Mater., 6(6), pp. 424–428.

[22] Sparreboom, W., Van Den Berg, A., and Eijkel, J., 2009, “Principles and
Applications of Nanofluidic Transport,” Nat. Nanotechnol., 4(11), pp.
713–720.

[23] Ozutemiz, K. B., Wissman, J., Ozdoganlar, O. B., and Majidi, C., 2018,
“Egain–Metal Interfacing for Liquid Metal Circuitry and Microelectronics Inte-
gration,” Adv. Mater. Interfaces, 5(10), p. 1701596.

[24] Sadd, M. H., 2009, Elasticity: Theory, Applications, and Numerics, 2nd ed.,
Academic Press, Waltham, MA.

[25] Muskhelishvili, N. I., 1977, Some Basic Problems of the Mathematical Theory
of Elasticity, 1st ed., Springer, Berlin.

[26] Smirnov, V. I., 1964, A Course of Higher Mathematics, Vol. 5, Elsevier,
Oxford, England.

[27] Savin, G. N., 1961, Stress Concentration Around Holes, Vol. 1, Pergamon
Press, Oxford, England.

[28] Kachanov, M. L., Shafiro, B., and Tsukrov, I., 2003, Handbook of Elasticity
Solutions, Springer Science & Business Media, Berlin, Germany.

[29] Anderson, T. L., and Anderson, T., 2005, Fracture Mechanics: Fundamentals
and Applications, CRC Press, Bacon Raton, FL.

[30] Adams, G. G., 2015, “Critical Value of the Generalized Stress Intensity
Factor for a Crack Perpendicular to an Interface,” Proc. R. Soc. A, 471,
p. 20150571.

Journal of Applied Mechanics OCTOBER 2018, Vol. 85 / 101004-7

http://dx.doi.org/10.1063/1.4789762
http://dx.doi.org/10.1038/nmat1907
http://dx.doi.org/10.1038/nnano.2009.332
http://dx.doi.org/10.1002/admi.201701596
http://dx.doi.org/10.1098/rspa.2015.0571

	s1
	s2
	FD1
	aff1
	aff2
	l
	FD2
	FD3
	s2A
	FD4
	FD5
	FD6
	FD7
	FD8
	FD9
	1
	FN1
	FN2
	FD10
	FD11
	s2B
	FD12
	FD13
	FD14
	FD15
	FD16
	FD17
	FD18
	FD19
	FD20
	s2C
	s2C1
	FN3
	FD21
	2
	3
	FD22
	FD23
	FD24
	FD25
	FD26
	FD27
	s2C2
	FD28
	FD29
	FD30
	FD31
	s3
	4
	FD32
	s4
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30

