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a b s t r a c t

Several recent designs of soft robots feature locomotion mechanisms that entail orchestrating changes to
intrinsic curvature to enable the robot's limbs to either stick, adhere, or slip on the robot's workspace.
The resulting locomotion mechanism has several features in common with peristaltic locomotion that
can be found in the animal world. The purpose of the present paper is to examine the feasibility of, and
design guidelines for, a locomotion mechanism that exploits the control of intrinsic curvature on a rough
surface. With the help of a quasi-static analysis of a continuous model of a soft robot's limb, we show
precisely how locomotion is induced and how the performance can be enhanced by controlling the
curvature profile. Our work provides a framework for the theoretical analysis of the locomotion of the
soft robot and the resulting analysis is also used to develop some design guidelines.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The soft robot's unique promise for enabling inherently safe
and adaptive features has made it one of the most appealing
emerging fields in robotics. Recent advancements in the field of
soft robots includes the development of bodyware control and
engineered adhesive materials (see, e.g., [2,4,5] and the three
examples shown in Fig. 1). For some soft robot designs, such as
the quadruped shown in Fig. 1(a) from [1], locomotion is achieved
by using the coordinated interaction of four soft limbs with the
external surface. Each of the limbs in this design contain a set of
pneumatic actuators which change the intrinsic curvature and
flexural rigidity of the limb [6].

Other notable examples of locomoting soft robots include worm-
or snake-like designs where serpentine locomotion is enabled by
using either a traveling wave generated by a fluidic elastomer actuator
[3], or hydraulic pressure [7] or shape memory alloys [8]. These
designs are similar to those featuring in the so-called continuum or
serpentine robots which feature in surgical and industrial applications
[9]. As discussed in [10], similar locomotion mechanisms can be found
in certain other robots such as the ETH-Zürich MagMite [11,12], the
University of Texas at Arlington ARRIpede robot [13,14], a design from
the University of Trento [15,16] and a design from Carnegie-Mellon
University [17] that features an electromagnetic drive. The designs

listed above that feature varying curvature and adhesion of limbs also
have their natural counterparts in a wide variety of creatures who
move using limbless crawling (peristaltic locomotion [18–20]). In
these animals, varying curvature is realized by muscles and adhesion
is achieved either by the use of bristles or mucus [21].

The wealth of designs and implementations in the aforemen-
tioned works make it difficult to gain a perspective on how
locomotion can be induced by properly coordinating the interac-
tion of the limbs with the ground plane on which the robot moves.
In order to examine this issue, a rod-based, flexible model for a
limb which is attached to a mass m is developed and examined.
Referring to Fig. 2, we consider a block of mass m that is free to
move on a rough horizontal surface. The block is attached to a
flexible rod whose intrinsic curvature κ0 is assumed to be
controllable. By varying the profile κ0ðsÞ of the intrinsic curvature,
the contact between the rod and the ground can be changed. In
particular, we seek to examine the best profiles κ0ðsÞ which enable
a locomotion of the block such as that shown in Fig. 3.

While the majority of works in the application area of interest have
addressed hardware design and fabrication, less attention has been
devoted to a numerical analysis of relevant theoretical models. Such
analyses are challenging because the behavior is often governed by
non-linear PDEs and recourse to numerical methods is typical. The
present paper provides a systematic analysis of the feasibility of a
locomotion scheme using a quasi-static analysis. While we do not
specify on the precise mechanism by which the intrinsic curvature is
changed, there has been an increased interest in the development of
mechanisms for changing κ0 in components of soft robots. The inte-
rested reader is referred to [22–26] for examples of these mechanisms.
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The paper is organized as follows: in the next section, Section 2, a
model for the system shown in Figs. 2 and 3 is established using rod
theory and the governing equations for the two configurations shown in
Fig. 3 are derived using variational principles. We follow [27,28] in the
treatment of stability criteria for the dry adhesion of rods. In Section 3,
numerical integrations of the governing equations are analyzed. Further-
more, the stability of these solutions is discussed in Section 4. Our
analyses demonstrate how controlling the intrinsic curvature can
coordinate the interaction between the soft robot and ground plane in
a manner that leads to effective locomotion of the system. We conclude
the paper with a discussion on different curvature profiles in Section 5
and a set of design recommendations for optimal performance of soft
robot featuring varying curvature and adhesion.

2. A simple model for a soft-limbed robot

We are interested in developing a simple model to analyze the
salient features for the locomotion of a soft robot. Referring to

Fig. 2, the model has two components: a rigid mass and a heavy
flexible elastic component. Thus one approach to modeling the
robot is to use Euler's theory of an elastic rod which is known as an
elastica. Euler's theory can be readily modified to include varying
intrinsic curvature and terminal loads due to added mass or
friction forces. Our developments and notation closely follow our
earlier works [27,28] on adhered intrinsically curved rods.

2.1. Background

The rod is modeled using Euler's theory of an elastica as a
uniform rod of length ℓ which has a flexural rigidity EI, mass per
unit length ρ and an externally controlled intrinsic curvature κ0. As
discussed in [6], the pneumatic actuation system in some soft
robots induces changes to EI and ρ but we do not consider these
effects here. Incorporating them into the model would follow the
lines of similar developments in models for growing plant stems
that are discussed in [29,30]. We also note that the rod is assumed
to be inextensible and unshearable. Adding these two kinematic
features would entail using a more elaborate rod theory.

Referring to Fig. 4, the arc length of the centerline of the rod is
parameterized using a coordinate sA ½0;ℓ�. The position vector of a
material point at s¼ s1 on the centerline of the rod has the
representation

r s¼ s1ð Þ ¼ X s¼ s1ð ÞE1þY s¼ s1ð ÞE2; ð1Þ
where the Cartesian coordinates X and Y are defined by

X s¼ s1ð Þ ¼ X s¼ 0ð Þþ
Z s1

0
cos ðθðξÞÞ dξ;

Y s¼ s1ð Þ ¼ Y s¼ 0ð Þþ
Z s1

0
sin ðθðξÞÞ dξ: ð2Þ

In (2), the angle θ is defined as the angle that the unit tangent
vector r0 makes with the horizontal E1 direction

r0 ¼ cos ðθðsÞÞE1þ sin ðθðsÞÞE2 ð3Þ
where the prime denotes the partial derivative with respect to s.

In addition to a gravitational force per unit mass �ρgE2 and an
adhesive potential energy Ω on certain segments of the rod's

Fig. 1. Examples of soft robots. (a) Quadruped with inflatable bending actuators from [1]. (b) Octopus-like soft robot from [2], and (c) soft robot with fluidic elastomer
actuator from [3].

Fig. 2. Schematic of a rod-based model for the soft robot. One end of the rod is
attached to a mass m.

Fig. 3. Illustration of the locomotion for the model system shown in Fig. 2. In (a) the
system is at rest and the soft limb is attached to the ground, then in (b) the profile κ0ðsÞ
of the intrinsic curvature changes and the block attached to the soft limb moves
forward. In (c), the intrinsic curvature is relaxed, the block sticks to the ground, and the
tip of the soft limb slips forward. In (d), the soft limb in contact with the ground plane
forms a dry-adhesive bond with the plane and a single cycle of the locomotion
mechanism is complete. The net displacement Δ for a single cycle is also shown.

Fig. 4. Schematic of a flexible elastic rod which is subject to a terminal force F0 and
terminal moment M0 at s¼0 and a terminal force F0 and terminal moment Mℓ at
the end s¼ ℓ. The coordinate s parameterizes the centerline of the rod.
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lateral surface, a terminal force Fℓ and terminal moment Mℓ are
presumed to act at the tip s¼ ℓ. In the problem at hand, the
terminal loading will be used to model the contact conditions at
the end of the soft limb. The bending moment M in the rod is
prescribed by a classic constitutive equation

M¼ EIðθ0 �κ0ÞE3 ð4Þ
where κ0 is a signed intrinsic curvature.

Along the length of the rod, discontinuities typically occur and
it is necessary to define the following limits for any function
X ¼X s;θðsÞ;θ0ðsÞ� �

:

X ðζ� Þ ¼ lim
s↗ζ

X s;θðsÞ;θ0ðsÞ� �
;

X ðζþ Þ ¼ lim
s↘ζ

X s;θðsÞ;θ0ðsÞ� �
: ð5Þ

The jump or discontinuity in the function X at the point s¼ ζ can
then be represented using a compact notation:

X½ �½ �ζ ¼X ðζþ Þ�X ðζ� Þ: ð6Þ

We shall assume that r is continuous (i.e., there are no breaks in
the rod). It follows that θ will then be continuous and r0½ �½ �ζ ¼ 0 for
all ζA ½0;ℓ�.

Henceforth we develop models for two distinct configurations of
the rod. In the first configuration, which is shown in Figs. 3(c) and 5,
the end of the rod at s¼ ℓ is in point contact with the ground plane.
We refer to this configuration as State I. The second configuration of
interest, which we refer to as State II, arises when a portion of the
rod sA ðγ;ℓ� is in contact with the ground plane and a dry adhesion
is present at this interface. Examples of this configuration can be
seen in Figs. 3(a, b, and d) and 6. We now turn towards establishing
the governing equations for the models for States I and II.

2.2. Governing equations for State I

In State I, the mass m is assumed to be held stationary with the
help of static friction. We define the end point of the rod that
connects to the singular mass to be s¼0 and the tip of the rod that
touches the rough ground to be s¼ ℓ. The normal force acting on
m is denoted by N2E2 and Ff 2E1 denotes the friction force. At the
tip of the rod, a normal force N1E2 and a friction force Ff 1E1 are
assumed to act. The normal force N1E2 is a constraint force due to
the unilateral constraint
Z ℓ

0
sin ðθðsÞÞ ds¼ �h: ð7Þ

Here, h¼ Yð0Þ�YðℓÞ is a constant height.
For our quasi-static analysis, where the inertias of the mass and

rod are ignored, there are two cases to consider. In the first case
the tip of the rod is assumed to be stationary. Thus, the static
friction force Ff 1E1 in this case is a constraint force due to the

constraint
Z ℓ

0
cos ðθðsÞÞ ds¼ d: ð8Þ

Here, d¼ XðℓÞ�Xð0Þ is a constant. With the help of the static
friction criterion and assuming the same coefficient of static
friction μs between the mass m and the ground and the rod tip
and the ground, we find that

N2 ¼mgþρgℓ�N1;

Ff 1 ¼ Ff 2 ; ð9Þ

where the normal and friction forces satisfy the following criteria:

Ff 1
�� ��rμsN1; N140;

Ff 2
�� ��rμsN2; N240: ð10Þ

Once the inequality in (10)1 is violated, the static friction force at
the tip of the rod changes to dynamic friction and d no longer
remains constant. In this case, (10)1 is replaced with

Ff 1 ¼ �μdN1

_X ðℓÞ
j _X ðℓÞj

: ð11Þ

For present purposes, we are particularly interested in changing
the curvature profile κ0ðsÞ so that

_X ðℓÞ
j _X ðℓÞj ¼ 1 and the tip of the rod

moves forward.
Because, the mass m is assumed to be fixed in State 1, the

potential energy of the rod consists of the sum of the strain energy,
gravitational potential energy and the potential energy of the
terminal load Fℓ

V ¼
Z ℓ

0

EI
2
ðθ0 �κ0Þ2þρgYðsÞ�Fℓ � r0

� �
ds; ð12Þ

where

YðsÞ ¼
Z s

0
sin ðθðξÞÞ dξ; Fℓ ¼ Ff 1E1þN1E2: ð13Þ

The integral can be simplified using a standard change in the order
of integration (see [31] for a clear discussion)
Z ℓ

0
ρg

Z s

0
sin θðξÞ� �

dξ ds¼
Z ℓ

0
ρgðℓ�sÞ sin θðsÞ� �

ds: ð14Þ

Since we are assuming that both ends of the rod are fixed, the first
variation of V can be used to derive the boundary-value problem
for the deformed shape θ of the rod:

EIðθ″�κ00Þ�ρgðℓ�sÞ cos ðθÞþN1 cos ðθÞ�Ff 1 sin ðθÞ ¼ 0; sA ½0;ℓ�:
ð15Þ

In addition, the sought-after solution θðsÞ to (15) needs to satisfy
the boundary conditions

θð0Þ ¼ 0; θ0ðℓÞ ¼ κ0ðℓÞ;Z ℓ

0
cos ðθðsÞÞ ds¼ d;

Z ℓ

0
sin ðθðsÞÞ ds¼ �h; ð16Þ

Fig. 5. Free body diagram for the model for State I. In this model, point contact at
the tip of the rod s¼ ℓ and the ground plane is assumed. The mass m is assumed to
be held stationary by static friction.

Fig. 6. Free body diagram for the model for State II. In this model, a portion ℓ�γ of
the rod adheres to the ground plane.
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and also satisfy (10). If the static friction criterion (10)1 is violated
then the tip of the rod will slip and the friction force at the tip
becomes dynamic (11). In this case, we need to solve (15) for θ
subject to the boundary conditions

θð0Þ ¼ 0; θ0ðℓÞ ¼ κ0ðℓÞ;
Z ℓ

0
sin ðθðsÞÞ ds¼ �h: ð17Þ

That is, the constraint (8) no longer holds.

2.3. Governing equations for State II

In State II, a portion of the rod from s¼ γ to s¼ ℓ is assumed to
be in continuous contact with the ground plane. At the point s¼0
where the rod is clamped to the mass m, the rod exerts a contact
force �n 0ð Þ on m. Using a balance of linear momentum for m and
ignoring the inertia of m and the rod, we find that

nð0Þ ¼ n1 0ð ÞE1þn2 0ð ÞE2 ¼N2E2�mgE2þFf 2E1: ð18Þ
As with the model for State I, N2 and Ff 2 are the normal and
friction forces, respectively, acting on m.

With the help of the static friction criterion, it is straightfor-
ward to see the following conditions need to be satisfied if the
mass m is to remain stationary:

n2Z�mg; jn1 jrμs n2ð0Þþmgð Þ: ð19Þ
If the mass mwere to slip, then ignoring the inertias of the rod and
mass m, we find that (19) needs to be replaced with

n2Z�mg; n1 ¼ �μk n2ð0Þþmgð Þ
_X ð0Þ

j _X ð0Þj
: ð20Þ

To find the terminal force nðγÞ, we use a local form of the balance
of linear momentum for the rod:

n0 þρf ¼ 0: ð21Þ
For the detached segment sA ½0; γ� of the rod, f ¼ �gE2, and so we
find that

n1ðγÞ ¼ n1ð0Þ; n2ðγÞ ¼ n2ð0Þ�ρg ℓ�γ
� �

: ð22Þ
The results (19), (20) and (22) will be used to compute the
potential energy of the rod.

The total energy of the rod in State II consists of the sum of the
strain energy, gravitational potential energy, the potential energy
due to the terminal load, and the adhesion energy. Here, we follow
the treatment in [27,28] and model the adhesion energy using a
constant ω for the adhesion energy per unit length along the
adhered part sA ½γ;ℓ�. It is straightforward to show that the
potential energy of the rod is

V ¼
Z γ

0

EI
2
ðθ0 �κ0Þ2þρgYðsÞ�nðγÞ � r0

� �
ds

þ
Z ℓ

γ

EI
2
ðθ0 �κ0Þ2þρgh�nð0Þ � r0 þω

� �
ds; ð23Þ

where

YðsÞ ¼
Z s

0
sin ðθðξÞÞ dξ: ð24Þ

In establishing (23) we emphasize that we are ignoring inertial
effects.

Similar to State I, the first variation of V can be performed to
establish the boundary-value problem which is used to determine
the deformed shape θ for the detached part of the rod:

EIðθ″�κ00Þ�ρgðγ�sÞ cos ðθÞþn2ðγÞ cos ðθÞ�n1ðγÞ sin ðθÞ ¼ 0;

sA ½0; γ�: ð25Þ
If (25) features static friction, then θ must satisfy the boundary
conditions

θð0Þ ¼ 0; θðγÞ ¼ 0;
EI
2
ðθ0 �κ0Þ2�n � r0

� �� �
γ
¼ω;

Z ℓ

0
cos ðθðsÞÞ ds¼ d;

Z ℓ

0
sin ðθðsÞÞ ds¼ �h ð26Þ

and (19). Alternatively, if m is in motion, then θ must satisfy the
boundary conditions

θð0Þ ¼ 0; θðγÞ ¼ 0;
EI
2
ðθ0 �κ0Þ2�n � r0

� �� �
γ
¼ω;

Z ℓ

γ
sin ðθðsÞÞ ds¼ �h ð27Þ

and (20).

3. The locomotion mechanism

To discuss the locomotion mechanism shown in Fig. 3, it is
convenient to divide the mechanism into a series of phases as
follows:

(A) In Phase A, the mass m is fixed and tip of the rod is initially
stationary and in contact with the ground plane. By judi-
ciously varying the curvature profile κ0ðsÞ, the tip of the rod is
induced to slip as far forward as possible.

(B) In Phase B, the mass m is fixed and, again by carefully varying
κ0ðsÞ, the length of the rod in contact with the ground plane is
increased using dry adhesion.

(C) In Phase C, the adhered length of the lateral surface of the rod
is decreased by varying κ0ðsÞ (i.e., peeling occurs), the mass m
slips, and is promoted to move as far forward as possible.

Fig. 7. Features of the curvature profile (28) as the parameter κmax is varied. (a) The dimensionless curvature throughout the deformed rod. (b) The corresponding deformed
shape of a heavy rod with an intrinsic curvature profile (28) and a vertical gravity loading. One end of the rod is assumed to be clamped while the other is free. The
dimensionless flexural rigidity D of the rod is D¼ EI

ρgℓ3 ¼ 0:1.
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At the end of Phase C, the only portion of the lateral surface of the
rod that is in contact with the ground plane is the tip of the rod.
For the mass to move further, Phases A, B, and C are repeated
sequentially. We now turn to examining the three phases in turn.

3.1. Curvature profile and dimensionless parameters

In our work, slip, adhesion, and peeling are controlled by
varying the intrinsic curvature profile and the choice of this profile
is critical to the feasibility of the proposed locomotion mechanism.
For the purposes of discussion, it is convenient to choose a
particular curvature profile which we express using a dimension-
less profile κ0

κ0 ¼
κ0
ℓ
¼ �16κmaxs

2ð1�sÞ2; ð28Þ

where κmax is a constant and the dimensionless arc length s is
defined as

s ¼ s
ℓ
: ð29Þ

The behavior of a clamped–free rod loaded by its own weight and
endowed with the curvature profile (28) is shown in Fig. 7. This
figure shows that the curvature profile does not generate physi-
cally unrealistic self-intersections of the rod as κmax is varied.

Numerical simulations in the sequel are performed using
Matlab's bvp4c package. For these simulations, it is convenient
to define a dimensionless flexural rigidity D, mass M, and adhesion
energy Wad

D¼ EI
ρgℓ3; M¼ m

ρℓ
; Wad ¼

ω
ρgℓ

: ð30Þ

We also use the weight ρgℓ of the rod to non-dimensionalize the
friction and normal forces. In an effort to make our figures more
concise, we denote sticking of the mass m by “S”, a tendency of the
mass to move to the left by “L” and a tendency to move to the right
by “R”.

3.2. Phase A

We start by considering the tip of the rod in point contact with
the ground plane as shown in Fig. 8. A key to successful locomo-
tion is to vary the normal force N1 at the contact point so that the
static friction criterion will be violated and the tip of the rod will
slip forward. To see how this can be achieved using the profile
(28), we solve the boundary value problem given by (15) and (16)
to determine the deformed shape of the rod and the dimension-

less normal N1
ρgℓ and friction

Ff1
ρgℓ forces at the tip.

As can be seen from Fig. 8(b), as κmax decreases, eventually a
point is reached where the tip of the rod slips. For the example
shown, this critical point occurs when κmaxo6:03. For the given

κ0ðsÞ, the tip slips to the right. Once the slipping is about to occur,
the friction force at the tip changes to dynamic friction and we need
to reformulate the boundary value problem in order to determine
the deformed shape of the rod. The resulting reformulated bound-
ary value problem now features (15) and (17). As κmax is decreased
from the critical value 6.03 to 0, we observe from Fig. 9(a) that the
tip moves increasingly forward and the length d

ℓ-1. The resulting
solution for various values of κmax is shown in Fig. 9(a).

During Phase A of the locomotion scheme, it is important that
the mass m remains stationary while the tip of the rod slips. To see
if m remains at rest, we need to verify the static friction criterion

for m. As can be seen from the graphs for μs
N2
ρgℓ and

Ff1 ¼ � Ff2

�� ��
ρgℓ in

Fig. 9(b), the static friction criterion holds as κmax is decreased
from 6 to 0.

3.3. Phase B

At the end of Phase A, the tip of the rod has extended as far to
the right as possible and κmax ¼ 0. It is at this stage that we assume
that dry adhesion is present between the lateral surface of the rod
and the ground plane. Our simulations also show the expected
results that more flexible (EI is small) heavier (ρℓ is large) rods are
conducive to having a large contact length. It is straightforward to
solve the resulting boundary value problem for Phase B in order
to determine the adhered length of the rod and so we now turn to
Phase C.

3.4. Phase C

At the start of Phase C, the curvature parameter κmax ¼ 0.
Referring to Fig. 10(a), as κmax increases from 0, the rod peels
from the surface. We observe from the inset image in Fig. 10(a) of d
as a function of κmax that the mass m moves initially to the left (d
increases), but eventually, the mass m moves to the right and the

Fig. 8. The first stage of Phase A of the locomotion scheme where the static friction
acts at the tip of the rod. (a) The deformed shape of the rod as κmax decreases from
7 to 0. (b) The corresponding dimensionless friction

j Ff1 j
ρgℓ and (scaled) normal μsN1

ρgℓ
forces acting at the tip of the rod in contact with the ground plane. For the results
shown, d¼0.72, D¼ EI

ρgℓ3 ¼ 0:1, and μs ¼ 0:3. When κmaxo6:03, the static friction
criterion is violated and so one of the configurations shown in (a) is not realizable.

Fig. 9. The second stage of Phase A of the locomotion scheme where the tip of the
rod is slipping forward. (a) The shape of the rod as κmax varies. (b) The
corresponding dimensionless forces acting at both ends of the rod. For the problem
at hand, Ff 1 ¼ �Ff 2 so the mass m remains stationary. For the results shown,
D¼ EI

ρgℓ3 ¼ 0:1, μk ¼ 0:2, μs ¼ 0:3, M ¼ m
ρℓ¼ 2, and κmax ranges from 6 to 0.

Fig. 10. Phase C of the locomotion scheme where the adhered length of the rod is
decreasing and the mass m is in motion. (a) The shape of the rod as κmax varies.
(b) The corresponding dimensionless forces acting at the mass m. For the results
shown, Wad ¼ ω

ρgℓ¼ 3:2, M ¼ m
ρℓ¼ 2, D¼ EI

ρgℓ3 ¼ 0:1, μk ¼ 0:2 and κmax increases from
0 to 15.
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desired locomotion is achieved. In order to switch from State II to
State I, we need to make γ reach ℓ. As illustrated in Fig. 10(a), as
κmax increases, γ will eventually reach ℓ with κmax ¼ 15. At this
stage in the locomotion process, only the tip of the rod at s¼ ℓ is in
contact with the ground plane.

The reason for the initial increase in d can be explained by
noting that as we started increasing κmax, the rod peeled but θ0ðγÞ
decreased. In order to accommodate the decreased value of θ0ðγÞ, d
was forced to increase. However, as κmax is increased beyond
� 5:42 in Fig. 10, d will start to decrease and the mass will move
forward. In our simulations of the boundary value problem to

analyze this case we updated the value of
_X ð0Þ

j _X ð0Þj to accommodate

the cases where d was decreasing and increasing.
A potential realization of the locomotion induced by Phase C is

shown in Fig. 11(a). The dimensionless plots of d and ℓ�γ as a
function of κmax shown in this figure were constructed by quasi-
statically increasing the latter variable from 0 and examining the
detachment of the rod and the movement of the mass m.

It is of great interest to examine the robustness of the locomo-
tion during Phase C to perturbations in the changes in system
parameters such as μk. To this end, we examined three distinct
instances, labelled i� iii on the graph in Fig. 11(a). For a given d, we
are interested in how varying κmax can produce changes in the
friction force Ff 2 and normal force N2 acting on the mass m.3

Consider for instance, the point i. As shown in Fig. 11(b), if we vary
κmax while assuming that d is constant, then we find that
eventually the mass will slip to the left. On the other hand for ii,
as shown in Fig. 11(c), we find that varying κmax will induce the
mass to move to the right. This is in contrast to iii (cf. Fig. 11(d)),

where varying κmax is capable of inducing the mass to move to the
left or the right. The nature of the variations in Ff 2 and N2 with
κmax implies that the locomotion scheme is robust with respect to
small changes in μs and μk.

3.5. The locomotion cycle

We now summarize our findings by illustrating the locomotion
of the mass m that can be achieved by cyclically varying κmax from
0-15. As can be seen in Fig. 12, where the dimensionless
displacement x

ℓ of the center of mass is displayed, the mass m will
initial move backwards, but as κmax is increased further, the mass
will move forward.

Fig. 11. Illustration of Phase C of the locomotion scheme featuring State II where static friction acting on the mass m is overcome and motion of m is achieved. In (a) the
dimensionless length of the rod d

ℓ and the dimensionless detached length 1� γ
ℓ as κmax varies when the massm slips. (b) The corresponding dimensionless forces acting at the

singular mass for fixed d and γ for three representative regimes: (b) κmaxA ½0;3�; (c) κmaxA ½5;6�; and (d) κmaxA ½5;12�. For the results shown Wad ¼ ω
ρgℓ¼ 3:2, M ¼ m

ρℓ¼ 2,
D¼ EI

ρgℓ3 ¼ 0:1, μk ¼ 0:2, μs ¼ 0:3 and κmax ranges from 0 to 15. The inset images show the deformed state of the rod.

Fig. 12. Results from the quasi-static analysis of the (a) change x in the mass m's
position in the E1 direction and (b) change xtip in the tip of the rod's position in the
E1 direction under the excitation of a periodic κmax. In (a), κmax ranges from 7.65 to
15.0 and in (b) κmax ranges from 0 to 6.56. The dimensionless parameters for this
model are Wad ¼ ω

ρgℓ¼ 3:2, M ¼ m
ρℓ¼ 2, D¼ EI

ρgℓ3 ¼ 0:1, μk ¼ 0:2, and μs ¼ 0:3.

3 The change in κmax will induce changes to γ.
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4. Stability analysis

The equilibrium configurations of the rod discussed in Section 3
feature large deformations and must be stable in order for the
locomotion scheme to be realized. The presence of friction con-
siderably complicates an analysis of this stability and we are forced
in the sequel to perform an approximate stability analysis. Thus,
for the configurations referred to as State I, we analyze stability
when the friction forces are static by considering the two limiting
cases of assuming that a constant force acts at the rod tip and the
tip is fixed (so the rod is clamped–fixed). The approximations we
adopt for examining the stability of State II are to assume that the
mass m is fixed. In this case, we can use the recently developed
stability criteria for elastic rods with dry adhesion that can be
found in [27,28].

4.1. Stability analysis for State 1

In order to cope with the challenge brought up by isoperimetric
constraint and friction in the stability analysis of State I, we
discretize the rod into a series of elements and approximate the
friction in two separate manners. First, we model the friction as a
constraint and second we approximate the friction as a constant
force. Next, the rod is modeled as a set of n�1 segments of length
ds and 2 segments of length ds

2 with nds¼ ℓ, the friction force at the
tip is treated as a constraint (cf. Figs. 13 and 14) and the system is
parameterized by nþ2 variables θ0;θ1;…;θnþ1. The total potential
energy (12) for the rod is approximated by its discrete counterpart

Vdis ¼
EI
2

Xn
i ¼ 1

θi�θi�1

ds
�κ0

	 
2

dsþρgðℓ�s0Þ sin ðθ0Þ
ds
2

þ
Xn�1

i ¼ 1

ρgðℓ�siÞ sin ðθiÞ dsþρgðℓ�snÞ sin ðθnÞds2 : ð31Þ

The isoperimetric constraints (16)3,4 are also discretized and we
need to impose boundary conditions on θi

sin ðθ0Þ
ds
2
þ

Xn�1

i ¼ 1

sin ðθiÞ dsþ sin ðθnÞ
ds
2
¼ h;

cos ðθ0Þ
ds
2
þ

Xn�1

i ¼ 1

cos ðθiÞ dsþ cos ðθnÞ
ds
2
¼ d;

θ0 ¼ 0;
θnþ1�θn�1

2ds
¼ κ0ðℓÞ: ð32Þ

Note that the variable θnþ1 is a well-known device to enable the
moment-free boundary condition at s¼ ℓ to the imposed and,
later, to approximate θ″ s¼ ℓð Þ.

The conditions (32)3 can be directly imposed on (31) to reduce
the dimension of the discretized system. That is,

Vdis ¼
EI
2

Xn
i ¼ 1

θi�θi�1

ds
�κ0

	 
2

ds

þ
Xn�1

i ¼ 1

ρgðℓ�siÞ sin ðθiÞ dsþρgðℓ�snÞ sin ðθnÞ
ds
2
; ð33Þ

and the discretized isoperimetric simplify to the pair of constraint
functions c1 and c2

c1 ¼
Xn�1

i ¼ 1

sin ðθiÞ dsþ sin ðθnÞ
ds
2
�h;

c2 ¼
ds
2
þ

Xn�1

i ¼ 1

cos ðθiÞdsþ cos ðθnÞ
ds
2
�d: ð34Þ

We observe that this pair of functions depends on the states
θ1;…;θn.

We next seek minimizers of Vdis which satisfy two discretized
constraints (34). The extremizer, which can be found in a standard
manner using the method of Lagrange multipliers, is denoted by
θn

1;…;θn

n

� �
. To examine the stability of the equilibrium state, it is

Fig. 13. Schematic of the discretization scheme for the rod.

Fig. 14. Verification of the stability of the equilibrium configuration shown in Fig. 9
by examining the smallest eigenvalue λ of ETLE: (a) corresponds to the case when
the static friction force is modeled as a constraint in the E1 direction; and
(b) corresponds to the case when the static friction force at the tip of the rod is
approximated by a constant force. For the examples shown, D¼ EI

ρgℓ3 ¼ 0:1, μk ¼ 0:2,
M ¼ m

ρℓ¼ 2 and κmax ranges from 0 to 6.

Fig. 15. Verification of the stability of the equilibrium in Fig. 10 with
Wad ¼ ω

ρgℓ¼ 3:2, D¼ EI
ρgℓ3 ¼ 0:1, M ¼ m

ρℓ¼ 2, μk ¼ 0:2 and κmax ranging from 0 to 15.
(a) The value w γ�ð Þ of the solution w(s) to the Riccati equation (44). (b) Stability
(J240) and instability (J2o0) at the singular point s¼ γ predicted by J2 in (46).

Fig. 16. Illustration of the locomotion during Phase C of the model system shown in
Fig. 3 with a constant intrinsic curvature profile κ0 (47) with Wad ¼ 3:2, D¼ EI

ρgℓ3 ¼ 0:1,
μk ¼ 0:2, M¼2, and κmax ranging from 0 to 7.2. (a) The shape of the rod as κmax varies.
(b) The dimensionless length of the soft limb in the E1 direction d

ℓ.
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convenient to define three n� nð Þ matrices

F¼∇2Vdis θn

1;…;θn

n

� �
;

H1 ¼∇2c1 θn

1;…;θn

n

� �
; H2 ¼∇2c2 θn

1;…;θn

n

� �
;

L¼ Fþχ1H1þχ2H2: ð35Þ

Here, the Lagrange multipliers χ1 and χ2 correspond to contribu-
tions from the normal force χ1E2 and the static friction force χ2E1.
It is well known that for an equilibrium to be stable, the potential
energy has to be locally minimized. To check whether the
equilibrium θn

1;…;θn

n

� �
locally minimizes Eq. (33), we use the

classical method of checking the eigenvalues of L corresponding to
the eigenvectors that lie in the (n�2)-dimensional tangent sub-
space M that is orthogonal to the (n-dimensional) gradient
vectors ∇c1ARn and ∇c2ARn defined by the two discretized
constraints (34). That is,

M¼ fuARn : ∇c1 θn

1;…;θn

n

� �
� u¼ 0 and ∇c2 θn

1;…;θn

n

� �
� u¼ 0g:

ð36Þ

It should be clear that ∇c1 and ∇c2 are both n-dimensional arrays:
∇c1ARn and ∇c2ARn. We denote an orthogonal basis for M by
the set of n-dimensional vectors u1;…; un�2f g. This basis can be
used to define a projection operator E where EzAM for all zARn

E¼ u1;…; un�2½ �: ð37Þ

With the help of E, the stability of the equilibrium can be
established by showing that the smallest eigenvalue of ETLE is
strictly positive [32]. As indicated by the results shown in Fig. 14,
the quasistatic equilibrium configurations for State I satisfy the
stability criterion.

With friction treated as a constant force, the discretized
potential energy function reduces to

Vdis ¼
EI
2

Xn
i ¼ 1

θi�θi�1

ds
�κ0

	 
2

ds

þρgðℓ�s0Þ sin ðθ0Þ
ds
2
þ

Xn�1

i ¼ 1

ρgðℓ�siÞ sin ðθiÞ ds

þρgðℓ�snÞ sin ðθnÞ
ds
2

�Ff cos ðθ0Þ
ds
2
�Ff

Xn�1

i ¼ 1

cos ðθiÞ ds�Ff cos ðθnÞds2 ; ð38Þ

subject to the following conditions:

sin ðθ0Þ
ds
2
þ

Xn�1

i ¼ 1

sin ðθiÞ dsþ sin ðθnÞ
ds
2
¼ h;

θ0 ¼ 0;
θnþ1�θn�1

2ds
¼ κ0ðℓÞ: ð39Þ

We now follow the same procedure as we did for the first case, but
with only a single constraint function. Our numerical results can
be seen in Fig. 14 and we conclude that the quasi-static equili-
brium configuration for State I satisfies the stability criterion.

4.2. Stability analysis for State II

For State II, we approximate the geometric constraints simply
by replacing them with the constraint forces and then use the
recent stability criteria from [27,28] for adhered intrinsically
curved rods. Before deriving the stability criteria for the State II,
we define the following pair of functions:

P ¼ �ρgðγ�sÞ sin ðθÞþn1ðγÞ cos ðθÞþn2ðγÞ sin ðθÞ;
P1 ¼ ρgðγ�sÞ cos ðθÞ�n2ðγÞ cos ðθÞþn1ðγÞ sin ðθÞ: ð40Þ

Fig. 17. Illustration of the effect of the degree of concentration of the intrinsic curvature profile on the locomotion. (a) The shape of the soft limb at γ ¼ ℓ with α¼ β varying
from 1 to 20. (b) The locomotion Δ

ℓ induced per period with α¼ β varying from 1 to 20. (b) The maximum intrinsic curvature κmax needed to get the soft limb detached with
α¼ β varying from 1 to 20. (c) The normal force N2

ρgℓ need on the singular mass with α¼ β varying. The dimensionless parameters for this model areWad ¼ ω
ρgℓ¼ 3:2, M¼ m

ρℓ¼ 2,
D¼ EI

ρgℓ3 ¼ 0:1, and μk ¼ 0:2.
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To establish the criteria for stability for the solution θ¼ θn, we
compute the second variation J of the potential energy function V
in (23). Omitting details as they can easily be deduced from
[27,28], we find that

J ¼
Z γ

0
ðEIη0η0 þPη2Þ ds�2 EIðθn″�κ0Þη0 þP1η

h ih i
γ
μ

� EIðθn″�κ00Þðθn0 �κ0ÞþP1θ
n0 �ρg sin ðθÞ

h ih i
γ
μ2: ð41Þ

Here, η¼ ηðsÞ correspond to the variation in θ and μ corresponds
to the variation in γ. These variations are subject to the following
compatibility conditions:

μθn0 ðγ� Þþηðγ� Þ ¼ 0; μθn″ðγ� Þþ2η0ðγ� Þ ¼ 0; ð42Þ
which we use to rewrite (41) as

J ¼
Z γ

0
ðEIη0η0 þPη2Þ ds� P1θ

n0 ðγ� Þþκ0P1þρg sin θðγ� Þ� �� �
μ2:

ð43Þ
Following Legendre's classical method, if we can find a function w
(s) which satisfies the following Riccati equation:

∂w
∂s

þP�w2

EI
¼ 0; wð0Þ ¼ 0; ð44Þ

then J can be expressed as

J ¼
Z γ

0
EI η0 þw

EI
η

� �2
dsþ J2; ð45Þ

where

J2 ¼ � P1θ
n0 ðγ� Þþκ0P1þρg sin θðγ� Þ� �� �

μ2

þη2ð0Þwð0Þ�η2ðγ� Þwðγ� Þ
¼ �μ2 θn0 ðγ� Þðθn0wðγ� ÞþP1Þþκ0P1

� �
: ð46Þ

In arriving at the final expression for J2, we used the boundary
conditions η 0ð Þ ¼ 0 and η γ�� �¼ 0. The function J2 and the Riccati
equation (44) form the basis for the stability criteria in [27,28]. If a
bounded solution to (44) on sA ½0; γ�, and J2Z0, then the equili-
brium configuration of the rod described by θnðsÞ satisfies a
necessary condition for stability.

The condition on the solution w to the Riccati equation (44)
feature in works examining buckling of the elastica (see e.g.,
[27,28,33] and references therein). Positivity of J2 can be consid-
ered as a stability criterion for the adhesion at the point s¼ γ. As
shown in Fig. 15, we are able to use the aforementioned criterion
to show that the equilibrium configurations in Fig. 10 are stable.
The results shown in Fig. 15(a) indicate that w(s) is bounded, while
the results in Fig. 15(b) show that the adhesion at s¼ γ is stable
when κmax47:65.

5. The role of the curvature profile

From the previous sections, it is obvious that the key in
inducing effective locomotion lies in the peeling process arising
in Phase C. Given the soft robot technologies available to produce
changes in the curvature profile κ0ðsÞ, such as pneumatic actuators
and shape memory alloys [2,4,5,1], it is of interest to explore the
effectiveness of given curvature profiles.

A naive proposed curvature profile would be a constant

κ0 ¼ �κmax ð47Þ
throughout the soft limb. We examined the locomotion that would
be produced by such a curvature profile and the results are shown
in Fig. 16. We found that instead of having d

ℓ decreasing, where d is
the horizontal extent of the rod (cf. Fig. 6), as the detaching
process begins (as in Fig. 10), d

ℓ increases by a small amount. This
result predicts that as the intrinsic curvature is altered the soft
limb would detach and adhere repeatedly without inducing any

Fig. 18. Illustration of the effect of the degree of concentration of intrinsic curvature profile on the locomotion. (a) The shape of the soft limb at γ ¼ ℓ with α¼ 3�β varying
from 1 to 2. (b) The locomotion Δ

ℓ induced per period with α¼ 3�β varying from 1 to 2. (c) The maximum intrinsic curvature κmax needed to get the soft limb detached with
α¼ 3�β varying from 1 to 2. (d) The normal force N2

ρgℓ on the mass m with α¼ 3�β varying from 1 to 2. The dimensionless parameters for this model are Wad ¼ ω
ρgℓ¼ 3:2,

M ¼ m
ρℓ¼ 2, D¼ EI

ρgℓ3 ¼ 0:1, and μk ¼ 0:2.
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effective displacement of the mass m. In conclusion, the profile
(47) is not effective.

One of the conclusions that can be drawn from Fig. 16 is the
potential need to concentrate the curvature variation along the
rod. To see that this is indeed the case, we consider more complex
forms of (28)

κ0ðsÞ ¼ �κmax
ðαþβÞðαþβÞsβð1�sÞα

ααββ
: ð48Þ

where α and β are positive constants. The maximal value κ0ðsÞ
�� ��

occurs when s ¼ β
αþβ

κ0 s ¼ β
αþβ

	 

¼ �κmax: ð49Þ

From Fig. 17, we can find that the net motion Δ
ℓ of the mass m

improves significantly as α increases from 1 to 5. However, the
maximum curvature κmax needed to completely detach the soft
limb also increases. In the regime where α increases from 5 to 20,
the maximum curvature κmax increases with a relatively small
improvement in the value of Δ

ℓ and the normal force N2
ρgℓ on the

mass m is always positive.
After investigating the effects of the distribution of curvature,

the next feature of interest is the location where the curvature is
largest. It can be easily shown from (48) that the location where

the curvature is maximum occurs at s ¼ β
αþβ. The larger the value

of α, the closer the location of the maximum is to the mass m. To
make different intrinsic curvature profiles comparable, we set
αþβ¼ const. As can be seen from Fig. 18, we find that as α was

increased, the locomotion Δ
ℓ improved significantly at a cost of

moderately increasing the maximum curvature κmax. However, the
normal force N2

ρgℓ became negative when α exceeded 1.9 and m

would have lifted off the surface.

5.1. Effects of varying mass m

We have assumed throughout our analysis that the mass m is
fixed. It is clearly of interest to examine how the locomotion scheme
will be effected by changing the mass m. The two features we will
focus on are the displacement Δ achieved in one cycle and the
maximum intrinsic curvature κmax needed to achieve detachment the
rod at the end of Phase C of the locomotion scheme. A summary of our

results is shown in Fig. 19, as the mass parameterM¼ m
ρℓ increases, we

find that the net displacement decreases slightly. However, the
maximum curvature κmax needed to produce a locomotion of
locomotion such as that shown in Fig. 19 will increase significantly.

6. Conclusions

Based on the numerical simulations and analysis of the simple
model, the following conclusions on locomotion can be drawn:

1. In this locomotion scheme, controlling the magnitude of the
curvature is sufficient to enable the soft limb to overcome static
friction at the tip contact.

2. The detachment of the soft limb at the end of the adhesion
phase of the motion is the key process to induce locomotion.

3. Concentration of curvature is crucial to enabling locomotion
and it is more effective to place the concentration towards the
mass rather than the tip.

These observations have potential influence on how soft robots are
operated and designed. The design and operation of these devices
include the actuator technology, materials, and geometric dimen-
sions required to deliver an effective locomotion. Such insights
have particularly important implications in the design and opera-
tion of soft robots. In addition, most of the results presented in this
paper can be adopted to study peristaltic locomotion.
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