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We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium

(GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine

its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing

layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K < 0).

Applying voltage U to the liquid metal electrodes induces electrostatic pressure (Maxwell stress)

on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending cur-

vature and corresponding angle of deflection #. Treating the elastomer as an incompressible, iso-

tropic, NeoHookean solid, we develop a theory based on the principle of minimum potential

energy to predict the principal curvatures as a function of U. Based on this theory, we predict a de-

pendency of # on U that is in strong agreement with experimental measurements performed on a

GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA,

this theory can inform improvements in design and fabrication. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4897551]

I. INTRODUCTION

Dielectric elastomer actuators (DEAs) represent a prom-

ising alternative to conventional actuator technologies for

powering soft bio-inspired robots, assistive wearable tech-

nologies, and other systems that depend on mechanical

“impedance matching” with soft biological tissue. In contrast

to electrical motors and hydraulics, DEAs can be made

entirely out of soft elastic materials and fluids and remain

functional under extreme bending and stretching. Moreover,

they operate with very little electrical power and can exhibit

as much as 90% efficiency of electrical energy input to me-

chanical work output. While there have been significant

improvements since early studies in the late 1990s, progress

in DEA performance and robotics implementation continues

to depend on advancements in materials selection, design,

and predictive theoretical modeling of the underlying elastic-

ity and electromechanical coupling.

Here, we introduce a DEA composed of liquid-phase

Gallium-Indium (GaIn) alloy electrodes embedded between

layers of poly(dimethylsiloxane) (PDMS).1 In contrast to

existing DEA designs, which contain inextensible (but flexi-

ble) frames,2 springs,3 or solid electrodes,4 the mechanics of

the GaIn-embedded composite is governed entirely by the

elasticity of the surrounding PDMS elastomer. Moreover, we

observe that the composite forms a saddle-shape and exhibits

a relationship between longitudinal bending curvature and

voltage that cannot be predicted with a classical bending

beam model (see, e.g., Sect. 4.2.2 of Ref. 5). Instead, we use

a kinematically parameterized shell theory and use the

Rayleigh-Ritz technique for minimum potential energy to

estimate the shape of the DEA at static equilibrium. We find

that the theoretical predictions are in strong agreement with

experimental measurements (without the aid of data fitting)

so long as we allow for negative Gaussian curvature

(K < 0). In addition to furnishing an accurate prediction for

the GaIn-PDMS composite, we are confident that this model-

ing approach can be extended to other DEA materials and

designs.

DEAs are composed of a soft insulating elastomer film

coated with conductive fluid or rubber electrodes. Applying

a potential difference U to the electrodes induces an electro-

static pressure (Maxwell stress) on the embedded dielectric

layer. As with a capacitor, nearly no current is drawn by the

DEA, and thus very little power is expended. The dielectric

is frequently created with a soft elastomer, such as acrylic-

based VHB tape (3MTM) or PDMS. DEA designs include

diaphragms,6 bimorphs,7,8 rolls,7,9 and reinforced planar

stacks10,11 and exhibit a variety of motions, load capacities,

and electromechanical coupling.
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A central challenge in DEA development is the selection

of “stretchable” electrodes that do not constrain the elastic de-

formation of the embedded dielectric layer.12 Typically, the

surfaces of the dielectric are coated with metallic particles,13

graphite powder,7 carbon fibers,7 carbon black,11 or carbon

grease.9,14 Alternatively, DEAs may comprise conductive

electrode materials such as electrolytic elastomers (hydro-

gels)15 or electrodes made conductive by direct filling with

conductive particles8 or through low-energy ion implantation.6

Fabrication methods include spraying, stamping, printing,

laser-cutting, and spin-coating, or creating thin-film metal

trace electrodes of copper, silver or gold using electroplating,

sputtering, evaporation and patterning with photolithogra-

phy.12 While carbon based electrodes are relatively cheap and

easy to fabricate, they have inherently high electrical resistiv-

ity and are often grainy and inconsistent at thinner layer thick-

nesses. In contrast, thin film metallic electrodes are highly

conductive and easily patterned, but add to the stiffness of the

DEA and require clever fabrication to undergo stretching

(e.g., pre-buckling and wavy electronics16).

Liquid-phase GaIn alloys represent a promising alterna-

tive to existing carbon based and solid electrode materi-

als.17,18 Like carbon grease, it does not interfere with the

mechanics of the surrounding elastomer and remains conduc-

tive during stretching. However, it exhibits 3–6 orders of

magnitude less electrical resistance, with a conductivity only

1/20th that of conventional copper wiring. Liquid GaIn has

already been used for soft and stretchable wiring,19 sen-

sors,20 and electronics.21 Microfluidic channels of liquid

alloy are typically produced with replica molding and needle

injection using techniques adapted from “soft” lithography

and microfluidics.22 However, DEAs require a thin film coat-

ing of liquid alloy that cannot be produced using needle

injection. Instead, they must be produced with techniques

like laser machining,23 masked deposition,24 or stencil

lithography.25,26

The dielectric in a DEA is typically modeled as an

incompressible elastic solid subject to a Maxwell stress

rM ¼ �r�0E2, where �0 is the permittivity of free space, �r is

a dielectric constant, and E is the electric field

strength.7,27–29 Recently, researchers have examined dynam-

ics,30 resonance,31,32 and failure of thin film dielectrics33,34

and the effect of viscoelasticity on electric instabilities and

fracture.35 In most cases, the elastomer in a DEA undergoes

elastic strains and bending curvatures that are beyond the

scope of linearized theories for elastic plates and shells.

Instead, we must use a non-classical shell theory that treats

the elastomer as an incompressible hyperelastic solid. For

moderate stretch, we can model the PDMS layers with a

NeoHookean constitutive law that only requires a single

coefficient of elasticity.36 For larger strains, we must use a

Mooney-Rivlin,37,38 Ogden,39 or any other model that allows

for nonlinear elasticity with two or more coefficients.

II. EXPERIMENTAL METHODS

The GaIn-PDMS composite is produced using the steps

presented in Fig. 1.1 The PDMS dielectric layer

(SYLGARD
VR

184; Dow Corning) is first applied on a flat

substrate using a 5 lm resolution thin film applicator (ZUA

2000 Universal Applicator, Zehntner GmbH). After curing

on a hot plate, eutectic GaIn (EGaIn, �99.99%; Sigma-

Aldrich) electrodes are manually deposited using an elasto-

meric blotter and laser-patterned (VLS3.50, Universal Laser

Systems) stencil.26 After deposition, the mask is carefully

removed and an encapsulating layer of PDMS is applied

over the exposed liquid electrodes. Before this sealing step, a

thin strip of adhesive-backed conductive paper (3MTM

Fabric Tape CN-3490) is placed in contact with each pat-

terned liquid metal electrode for eventual interfacing with

external electronics. Following another cure on the hot plate,

the composite PDMS-EGaIn-PDMS film is carefully peeled

and flipped in order to expose the other side of the dielectric

layer, and a second set of electrodes is applied in the same

way. The pre-strain required for inducing curvature is

achieved by manually stretching the DEA by 6% and allow-

ing it to naturally adhere to a substrate. Lastly, a thicker layer

of PDMS elastomer is applied over the stretched DEA. The

sealing layer, dielectric layer (separating the embedded elec-

trodes), and substrate layer have thicknesses of H1¼ 163 lm,

H2¼ 85 lm, and H3¼ 490 lm, respectively.

The resulting curved DEA is connected to a 10 kV high

voltage transformer (Q101-5, EMCO High Voltage

Corporation) via conductive paper leads and placed on an

isolated substrate. A high voltage probe (PR 28A HV DMM

Probe, B&K Precision) attenuates by 1000� the voltage

across the actuator for real-time recording via an Arduino

UNO R3 microcontroller with a custom MATLAB GUI

interface. Recorded footage of the device actuating as the

voltage is slowly (�0.02 Hz) ramped up and down from

0.0–5.0 kV is evaluated using a video analysis and modeling

software (Tracker; https://www.cabrillo.edu/�dbrown/

tracker/). We extract data on deformation (bending) as a

function of time by monitoring the changing beam tip deflec-

tion with the aid of the automated object tracking tool. The

voltage can then be interpolated and correlated with the

Tracker output based on time stamps for a complete descrip-

tion of actuation in response to voltage.

FIG. 1. Illustration of DEA layer components during fabrication showing (i)

encapsulated electrodes and compliant electrode layers, (ii)–(iv) straining of

DEA composite and bonding to an initially unstrained substrate polymer

layer, and (v) curved configuration of released actuator with picture of actual

device.
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III. THEORY

In its natural (i.e., isolated, stress-free) state, each

PDMS layer of the DEA is a right rectangular prism with

length Li, width Wi, and thickness Hi as shown in Fig. 3. As

illustrated in Fig. 1, the index i 2 f1; 2; 3g identifies the layer

(layer 1—sealing layer; layer 2—dielectric layer coated with

electrodes on the top and bottom surfaces; layer 3—thick

elastomer substrate). In order to induce residual bending cur-

vature in the DEA, layers 1 and 2 have dimensions L1 ¼
L2 < L3 and W1 ¼ W2 � W3. To assemble the DEA, layers 1

and 2 are bonded together and then stretched so that they

share the same length and width as layer 3. When the third

layer is bonded, the composite deforms in order to relieve

the residual strains in the pre-stretched layers. In general,

this deformation involves changes in the width, length, and

bending curvature(s) of the composite. Moreover, the shape

of the DEA at static equilibrium changes when electrical

voltage U is applied to the electrodes. Fig. 2 shows the direc-

tion of beam deflection with applied voltage U, which results

in a changing # (defined as half of the arc angle �h shown in

Fig. 3). We observe that in addition to bending about its in-

termediate (width-wise) axis, the GaIn-PDMS composite

also bends in the opposite direction about its major (length-

wise) axis to form a saddle-like shape. Pure bending (zero

Gaussian curvature, i.e., K ¼ 0 and saddle-like deformation

(K < 0) are examined separately in Subsections III A and

III B. In both cases, the bending curvature about the interme-

diate axis decreases as the applied voltage U increases.

A. Pure bending

One method for modeling the device is to simplify the

kinematics by ignoring saddle formations and assuming a

plane strain condition. Under this description, each layer is

of equal width W regardless of deformation. The result is

pure bending where the DEA curls into a circular arc with an

inner radius of q and an arc angle of �h (see Fig. 3).

Alternatively, the inner radius can be described in terms of

curvature j and length ‘. Furthermore, the liquid metal elec-

trodes are assumed to be infinitely thin, and a NeoHookean

constitutive model is employed for the PDMS elastomer.

(NeoHookean is deemed appropriate because strains are less

than 10%.) The strain energy density shown below can be

determined with the three principal stretches (ki) and a mate-

rial coefficient of elasticity C1 ¼ Y=6, where Y is the

Young’s modulus for uniaxial loading

w ¼ C1ðk2
1 þ k2

2 þ k2
3 � 3Þ: (1)

We define kh; kn, and kz as principal stretches. The sym-

bol kh refers to the stretch along the arc length (eh), kn to the

width (en), and kz to the thickness (ez). Incompressibility dic-

tates that the product of these three stretch values must be

equal to 1, and so the plane strain condition implies kn ¼ 1

and kzðzÞ ¼ 1=kh. The stretch khðzÞ can be quantified as

‘ð1þ jzÞ=Li, where z the position of material radially from

the inner surface. The elastic strain energy X can then be

determined by plugging the stretch values into the

NeoHookean energy density equation (1) and integrating

over the unstrained, material volume: X ¼ X1 þ X2 þ X3,

wi ¼ C1

‘

Li
1þ jzð Þ

� �2

þ ‘

Li
1þ jzð Þ

� ��2

� 2

( )
; (2)

X1 ¼
ðH1

0

w1WL1 dz; (3)

X2 ¼
ðH1þH2

H1

w2WL2 dz; (4)

X3 ¼
ðH1þH2þH3

H1þH2

w3WL3 dz: (5)

FIG. 3. (a) Actuator cross-section with dimensions before assembly (electro-

des marked by black lines shown only for illustrative purposes and are not

included in the thickness dimensions). (b) Actuator cross-section after

assembly.

FIG. 2. Side view of soft-matter PDMS-GaIn DEA composite during

testing.
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Equivalently, the stretch khðzÞ can be quantified as
�hðqþ zÞ=Li. As before, kn ¼ 1 and kzðzÞ ¼ 1=kh. Because

the elastomer is incompressible, the elastic strain energy can

be calculated by integrating over the dimensions in the final

configuration, where hi refers to the deformed thickness of

each layer which can be determined based on the stretch def-

initions and the actuator geometry

wi ¼ C1

�h qþ zð Þ
Li

 !2

þ
�h qþ zð Þ

Li

 !�2

� 2

8<
:

9=
;; (6)

X1 ¼
ðh1

0

w1ðqþ zÞW�h dz; (7)

X2 ¼
ðh1þh2

h1

w2ðqþ zÞW�h dz; (8)

X3 ¼
ðh1þh2þh3

h1þh2

w3ðqþ zÞW�h dz: (9)

For the electrostatic energy, the electric field as a func-

tion of q can be determined using Maxwell’s equations. To

begin, we assume no charge builds within the elastomer, so

the divergence of the electric field (gradient of the potential

u) is known to be zero between and outside the electrodes.

The result is the following differential equation with respect

to z: u;zz þ ð1=ðqþ zÞÞu;z ¼ 0. Furthermore, we can

describe the potential at the electrodes as U=2 and �U=2,

where U is the applied voltage drop. The change in potential

with respect to z is assumed to be negligible outside of the

electrodes. This boundary value problem yields the follow-

ing solution for the electric field:

E ¼ U

qþ zð Þln qþ h1 þ h2ð Þ= qþ h1ð Þ
� � : (10)

The electrostatic contribution U/ to the total potential

energy is

U/ ¼ �
ðh1þh2

h1

1

2
�r�0E2 qþ zð Þ�h W � 2bð Þdz ; (11)

which corresponds to an “electrical enthalpy.” Here, �0 ¼
8:85� 10�12 F/m is the vacuum permittivity and �r again is

the relative electrical permittivity (i.e., dielectric constant).

Also, the dimension b (0.75 lm) represents the width of the

PDMS border in the plane of the liquid GaIn electrodes.

Electrostatic energy can also be approximated by assuming

that the electrodes form a parallel plate capacitor. The width

of this capacitor is We, the electrode separation h2, and the

length is approximated as ‘D ¼ L2kh where kh is evaluated at

z ¼ h1 þ h2=2. The capacitance C is then determined and

used to calculate U/

C � �r�0We‘D

h2

; (12)

U/ ¼ �
1

2
CU2 ¼ � �r�0We‘DU2

2h2

: (13)

Lastly, at static equilibrium, the combined energy P ¼
Xþ U/ must be minimized with respect to the free kinematic

parameters q and �h. Note that fq; �hg and f‘; jg are geometri-

cally related and can be interchanged. This can be performed

numerically with a multivariable optimization or by finding the

solution to the two linearly independent equations @P=@q ¼ 0

and @P=@�h ¼ 0. For the work presented here, the combination

of current volume strain energy and Maxwell’s solution and the

combination of material volume strain energy and capacitor

approximation result in nearly equivalent results.

B. Saddle-like deformation

In practice, we observe that the DEA deforms into a

saddle-like shape with negative Gaussian curvature

K ¼ �jhj/, where jh and j/ are the principal curvatures

along the length (eh) and width (e/), respectively. In order to

examine the dependency of fjh; j/g on U, we consider three

representations (placements) of the elastic layers. In the natu-
ral placement, each layer is isolated and has dimensions

fLi;Wi;Hig. In the reference placement the pre-stretched

layers (1 and 2) are bonded to the thick substrate (layer 3) and

the composite relaxes into a rectangular prism of length ‘ and

width w. Here, each point has Euclidean coordinates {X, Y, Z}

where the tangent bases feX; eY ; eZg are oriented along the

composite length, width, and thickness, respectively. Lastly,

in the current placement, the composite deforms such that the

top of layer 1 (sealing layer) forms a saddle surface S1 with

dimensions f‘;wg and principal curvatures fjh; j/g as

defined below. Here, each point has “inverted” spherical coor-

dinates fh;/; zg and the coordinate lines have tangent (covari-

ant) vectors feh; e/; ezg. The coordinates fh;/; zg along with

the arcangles f�h; �/g and radii of curvature qh ¼ j�1
h and

q/ ¼ j�1
/ for the S1 centerlines are defined in Fig. 4.

Assuming that points in the eX � eZ and eY � eZ planes

of the reference placement remain plane, the eh � e/ surfa-

ces form saddles S. For each z, S has centerlines with

FIG. 4. (a) DEA composite deforms to form a saddle-like geometry.

(b) Deformation in the eh � ez plane shows bending with radius qh ¼ j�1
h in

the longitudinal direction. (c) Deformation in the e/ � ez plane shows bend-

ing with radius q/ ¼ j�1
/ in the width-wise direction. (d) Position of a point

x within a saddle surface S.
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arcangles �h ¼ jh‘ and �/ ¼ j/w and radii of curvature qh þ
z and q/ � z. The coordinate lines along the eh and e/ direc-

tions have total lengths of ‘h ¼ fðqh þ zÞ þ ð1�
cos /Þðq/ � zÞg�h and w/ ¼ ðq/ � zÞ�/, respectively.

Referring to Fig. 4, a point in S has a position

x ¼ xðh;/; zÞ ¼ ðqh þ q/ÞeqhðhÞ þ ðq/ � zÞeq/ðh;/Þ ;
(14)

where eqh ¼ sin heX þ cos heZ and eq/ ¼ sin /eY � cos /eqh.

For each z, the saddle surface S has an area of

a zð Þ ¼ qh þ q/½ ��/ � 2 q/ � zð Þsin
�/
2

� �� �
�h q/ � zð Þ : (15)

Each layer of the composite is assumed to be incompressible

and so the final thicknesses hi can be estimated by dividing

the initial volume by the final area of its top surface:

hi � WiLiHi=ai, where a1 ¼ að0Þ; a2 ¼ aðh1Þ, and

a3 ¼ aðh1 þ h2Þ. The final layer thicknesses hi are only

approximations because they are calculated using the area of

the top surface rather than mid-plane of each layer.

Moreover, the exact layer thickness will be non-uniform

since the principal stretch kh in the eh direction increases

with j/j. Nonetheless, the above approximations are used

since it allows the thickness to be estimated explicitly by cal-

culating a1, h1, a2,…, h3 in sequence.

Each layer is treated as a hyperelastic solid with princi-

pal stretches fkh; k/; kzg in the feh; e/; ezg directions and a

strain energy density w ¼ wðkh; k/; kzÞ. The stretches kh and

k/ are calculated by dividing the arclength of each convect-

ing coordinate line by its original length in the natural place-

ment: khð/; zÞ ¼ ‘h=Li and k/ðzÞ ¼ w/=Wi, where i¼ 1, 2,

and 3 for z 2 ½0; h1Þ; ½h1; h1 þ h2Þ, and ½h1 þ h2; h1 þ h2

þ h3�, respectively. Incompressibility implies kz ¼ 1=khk/

and that the total elastic strain energy X ¼
P3

i¼1 Xi can be

calculated by integrating w in the current placement where

now Xi are evaluated as follows:

X1 ¼
ðh1

0

ð �/=2

��/=2

w‘hðq/ � zÞ d/ dz; (16)

X2 ¼
ðh1þh2

h1

ð �/=2

��/=2

w‘hðq/ � zÞ d/ dz; (17)

X3 ¼
ðh1þh2þh3

h1þh2

ð �/=2

��/=2

w‘hðq/ � zÞ d/ dz : (18)

For a pre-strain of <10% in layers 1 and 2, we expect only

moderate stretches at static equilibrium. Therefore, we again

treat the composite as a NeoHookean solid and let

w ¼ 2C1 k2
h þ k2

/ þ
1

k2
hk

2
/

� 3

 !
; (19)

where C1 ¼ Y=6 is the coefficient of elasticity as before.

When voltage U is applied, the DEA has a total potential

energy P ¼ Xþ U/, where U/ is the electrical enthalpy.

Since the electrodes are surrounded by a border that is

b¼ 0.75 mm wide, the final area is approximately va2, where

v ¼ ðW2 � 2bÞðL2 � 2bÞ=W2L2. In the current placement

(i.e., saddle-shape configuration), the capacitance between

the two electrodes is estimated as C � v�r�0a2=h2 and the

electrical enthalpy is

U/ ¼ �
1

2
CU2 ¼ �v

�r�0a2U
2

2h2

: (20)

Lastly, the unknown kinematic parameters fw; ‘; jh; j/g are

determined by minimizing the total potential energy P. This

may be accomplished either by performing a multivariable

optimization or finding the solution to the stationary condi-

tions @P=@w ¼ @P=@‘ ¼ @P=@jh ¼ @P=@j/ ¼ 0. While

both approaches are valid, numerical minimization is more

convenient since it eliminates the additional step of calculat-

ing the partial derivatives of P.

IV. RESULTS AND DISCUSSION

Results from the experiments and theory are presented

in Fig. 5. The grey dots correspond to experimental measure-

ments collected from a single DEA sample and the dashed-

dotted curve are theoretical predictions from the simplified

pure bending model. The pure bending theory overestimates

the angle of deflection by approximately 9�. Furthermore, it

exaggerates the change D# in arcangle # ¼ �h=2 as a function

of applied voltage U. This is most likely because the plane

strain assumption underestimates the final thickness of the

dielectric, causing an overestimate of the electrostatic com-

ponent of the potential (particularly at higher strains and vol-

tages). The lack of saddling may also play a role in the

misrepresentation of D# since the effective area moment of

inertia is underestimated.

The general saddling theory presented yields predic-

tions, represented by the solid curve with circular markers,

which are in much stronger agreement with the experimental

measurements. These predictions correspond to a uniaxial

pre-stretch of layers 1 and 2 during the DEA assembly. As

FIG. 5. Comparison of experimental measurements and theoretical predic-

tions for the arcangle # ¼ �h=2 as a function of applied voltage U: (gray

dots) experimental data collected from repeated measurements on a single

DEA sample; (dash-dot) the theoretical prediction based on the simplified

pure bending model; (circles) prediction from the generalized theory with

“uniaxial” pre-stretch; (dashed) prediction with “plane strain” pre-stretch.
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discussed above, the two layers are first bonded together and

stretched so that they share the same width and length of

layer 3. For pure uniaxial loading, the two layers stretch by

an amount k̂X ¼ L3=L1 ¼ L3=L2 in the eX direction and k̂Y ¼
k̂Z ¼ k̂

�1=2

X in the eY and eZ directions. This requires an ini-

tial width W1 ¼ W2 ¼ W3=k̂Y ¼ W3

ffiffiffiffiffiffiffiffiffiffiffiffi
L3=L1

p
. We use the

term “uniaxial” since the elastomer is under uniaxial stress

during pre-stretch with the condition rY ¼ rZ ¼ 0 implying

k̂Y ¼ k̂Z.

The theoretical prediction appears to be in strong agree-

ment with the experimental measurements (without the aid

of data fitting). While the resulting observed change in bend-

ing curvature is less than has been demonstrated by other

unimorph type DEAs,13 our device both takes into account

saddling due to pre-stretch and also displays no obvious deg-

radation of the electrode material throughout testing (though

a much more extensive study is necessary to verify this

claim). However, the theory suggests that even greater bend-

ing can be achieved by imposing a “plane strain” loading

condition during pre-stretch. To accomplish this, layers 1

and 2 should be constrained such that k̂Y ¼ 1 during pre-

stretch. Theoretical predictions based on this case where

W1 ¼ W2 ¼ W3 are presented by the dashed curve in Fig. 5.

This prediction preserves the dependency of D# on U but

increases the absolute angle of deflection by approximately

7�. The greater bending angle is attributed to a dramatic

reduction in transverse curvature (see Fig. 6), which allows

for almost pure bending deformation. Here, “plane strain”

refers to the constraint that strain only in the eX � eZ plane.

However, this could also be interpreted as a “plane stress”

assumption where stress is restricted to the eX � eY plane

(i.e., rZ ¼ 0).

Fig. 6 compares curvatures in the two bending planes of

the saddle-shaped DEA. For uniaxial pre-stretch, the bending

curvatures in the eh � ez (open circles) and e/ � ez (open tri-

angles) planes are approximately jh � 84–93 m�1 and j/ �
32–39 m�1, respectively. This relatively high degree of sad-

dling can be explained by Poisson’s effect as the actuator

bends. Although the DEA layer is generally in tension while

the initially unstrained layer is in compression, the uniaxial

pre-stretch results in an approximately constant width with

respect to z (j/ � 0) if jh is forced to zero by some external

moment. However, as the beam bends, material towards the

inner surface experiences more compression and width

expansion, causing the saddle formation (j/ > 0). Unlike an

external moment, which lengthens the DEA layer but short-

ens its width, electrostatic pressure during actuation leads to

an increase in both width and length. As a result of the width

expansion, actuation induces an increase in j/.

For plane strain pre-stretch, bending in the eh � ez plane

(filled circles) is greater (jh � 97–107 m�1), however the

curvature in the e/ � ez plane (filled triangles) is almost neg-

ligible (j/ � 0.5–5 m�1). Unlike the uniaxial case, one

would expect a negative j/ to form if jh were reduced to

zero by an external moment; due to the plane strain, the

DEA layer would attempt to contract to a smaller width than

the initially unstrained layer. As the beam bends, the inner

material experiences the same phenomenon described for the

uniaxial case, favoring a more positive j/. At equilibrium

under no voltage, the negative j/ caused by the plane strain

and the positive j/ caused by the beam bending nearly can-

cel out. As with the uniaxial case, actuation with an applied

voltage tends to increase the DEA width, further increasing

j/ in the positive direction. The minimal saddling in the

plane strain pre-stretch case explains why its 0 voltage pre-

dictions are similar to those of the pure bending model. The

saddling has the greatest effect on the effective area moment

of inertia in comparison to overall width or thickness.

The theoretical predictions presented in Figs. 5 and 6 are

obtained for geometries and materials constants based on the

experimental DEA sample: L1¼ L2¼ 20 mm, L3 ¼ 1:06L1

¼ 21.2 mm, W3¼ 6.5 mm, b¼ 0.75 mm, H1¼ 163 lm,

H2¼ 85 lm, and H3¼ 490 lm. The Young’s modulus,

E¼ 1 MPa, was determined through tensile tests with an

Instron
VR

materials testing system (Model #4467; Instron) and is

similar to values found in the literature.20,40–43 A dielectric con-

stant �r¼ 2.72 is reported in the product data sheet of the mate-

rials supplier (Dow Corning, Inc.). The double integrals for

computing Xi are performed in MATLAB R2011b and R2013a

using an adaptive Simpson quadrature (dblquad) and P is mini-

mized for fw; ‘; jh; j/g using a direct simplex search method

(fminsearch).

V. CONCLUDING REMARKS

We have introduced an entirely soft DEA that contains

no rigid or inextensible materials. It is composed of PDMS

embedded with a liquid-phase GaIn alloy. After assembly,

the GaIn-PDMS spontaneously deforms into a saddle-shape

that changes curvature when voltage is applied to the liquid

electrodes. This shape is accurately predicted with an elastic

shell theory based on the principle of minimum potential

energy and hyperelastic constitutive model. Since the materi-

als undergo only moderate strains (<10%), good agreement

between theory and experiment can be achieved with a

NeoHookean constitutive law, which only requires a single

coefficient of elasticity. In general, DEAs with large pre-

stretch and bending curvature should be modeled with a

more accurate nonlinear constitutive law. However, even in

these cases, the proposed 4-parameter kinematic

FIG. 6. Comparison of predicted bending curvatures jh and j/ in the

(circles) eh � ez and (triangles) e/ � ez planes: (open markers) uniaxial pre-

stretch; (filled markers) plane strain pre-stretch.
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representation for a saddle-shaped shell with negative

Gaussian curvature is sufficient for predicting the shape at

static equilibrium for prescribed pre-stretches and voltage.

While we focused on two types of pre-stretch (so-called uni-

axial and plane strain loading), the theory is sufficiently gen-

eral for any biaxial loading condition on the dielectric layer

prior to bonding and release.
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