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Abstract—Unlike traditional pressure sensitive adhesives, the natural setal arrays of gecko lizards
achieve dry adhesion with stiff, keratinous material. This remarkable property has inspired a new class
of adhesive and high friction microstructures composed of stiff materials that, like natural setae, have
an elastic modulus greater than 1 GPa. In contrast to softer materials, such as rubber and low molecular
weight acrylates, stiff materials have the advantage of wear and creep resistance and represent a wide
range of polymers, metals, and ceramics that include materials that are also temperature resistant and
biocompatible. This work presents progress in the design and fabrication of synthetic gecko adhesives
with particular attention to the principles of contact mechanics and elasticity that are essential in
formulating accurate design criteria.
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1. INTRODUCTION

Since the discovery that the gecko’s elaborate adhesive structures rely significantly
on van der Waals forces [1, 2], a number of researchers have sought to mimic the
lizard’s clinging capabilities. Synthetic gecko-adhesives have primarily taken the
form of dense arrays of fibers, as this is the most basic and easily reproduced facet
of the gecko’s hierarchical structure. However, to date only a few synthetic materials
have started to show some aspects of gecko-like behavior [3–9].

One possible path to success is to make slender, high aspect ratio structures with
correspondingly high density. Such structures are generally prone to self-adhesion
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[10, 11] unless they have a high stiffness and adequate spacing. For instance, multi-
walled carbon nanotubes (MWCNTs) avoid severe clumping because of their high
modulus of elasticity E. They are also able to overcome their inherent stiffness to
produce adhesion [4] through bending into side contact [12]. However, whereas
the gecko’s fibers last months between molting cycles [13], the nanotubes start to
deteriorate after only a few uses due to entanglement and fibers breaking off from
the backing material.

Some success has been obtained with the arrays of vertically aligned, low-
aspect ratio pillars that are either fabricated from soft polymer (E ∼ 1 MPa)
[5, 7, 14] or supported by a pressure sensitive adhesive (PSA) [15]. These structures
represent steps towards fibrillar adhesion, but the soft nature of the fibers will
limit any other similarities to the gecko, such as resistance to wear and particulate
contamination [13].

In terms of modulus, the gecko fits into the middle of the two extremes between
carbon nanotubes and soft polymers. It provides a principal example of how
geometry can be used to turn a stiff material (E ∼ 1 GPa) into something as
compliant as a pressure sensitive adhesive (Eeff ∼ 80 kPa) [16] while maintaining
desirable properties of a stiff bulk material.

Fiber arrays composed of stiff polymers, stiffness on the order of that of the
gecko, are showing promising results in terms of high friction [6] and modest shear
adhesion. Figure 1 shows a polypropylene (E = 1 GPa) array of 0.6 µm diameter,
20 µm long fibers able to support a coin through friction, and a 100 g weight in pure
shear. In addition, it is commonly accepted that a high modulus correlates to a high
melting temperature [17], low coefficient of expansion [18] and high resistance to
wear [19].

To develop more effective fiber arrays, it is necessary to first model and understand
the behavior of fibrillar structures. In this paper, classical beam theory, including
Euler–Bernoulli and column buckling, are used to get a first-order approximation
of the problem, and then higher level models, like elastica, are employed for more
accurate predictions.

To test the models, we present methods for fabricating stiff arrays from polymers
such as polypropylene (PP) and polyimide (PI) (E = 3 GPa) as well as from nickel
(E = 200 GPa). These fiber arrays show some undesirable properties like clumping,
length variation and substrate curvature, but we have developed theories to explain
these phenomena and methods to mitigate their effects. We also developed an
apparatus for measuring tangential and normal forces at different size scales. For
macro-scale tests, a classical pulley apparatus is sufficient, but for the smaller scale
we have assembled a two-axis force sensor with a spherical probe. This provides
insight into the specific regions of a sample.
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Figure 1. Array of 0.6 µm diameter, 20 µm long polypropylene fibers supporting (a) an American
quarter at a slight angle and (b) a 100 g weight in pure shear. The inset picture in (a) is an SEM
micrograph of the fiber array. Scale bar is 10 µm.

2. MATHEMATICAL MODELS OF NATURAL AND SYNTHETIC SETAE

Design criteria for fiber array adhesives are derived from mathematical models that
treat the synthetic fibers as planar elastic rods. The deformed configuration of the
rod is parameterized in two dimensions by the angular deflection θ = θ(ξ) with
respect to a fixed, rectilinear axis. The coordinate ξ denotes the arc length between
the support and a point on the rod. At the tip, ξ = L, where L is the fiber length.
For the structures of interest, the fiber is cylindrical and thus has a bending stiffness
EI , where E is the elastic modulus, I = πR4/4 is the area moment of inertia, and
R is the fiber radius.

The primary aim of the elastic rod model is to establish a relationship between tip
displacement and the magnitude and direction of externally applied load. Typically,
fibers will be loaded at the tip by a combination of friction and adhesion or
compressive forces. These forces generate an internal moment M = M(ξ), which
is related to θ = θ(ξ) through the constitutive relationship

M = EI
dθ

dξ
⇒ dM

dξ
= EI

d2θ

dξ 2
. (1)

In general, an elementary solution to (1) is only possible by linearizing (1) about the
undeformed configuration. This yields models for Euler–Bernoulli beam bending
and ideal column buckling. In cases for which linearization is not admissible, the
complete solution is obtained with elastica theory.
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2.1. Euler–Bernoulli beam model

For small deflections (|θ | < π/12) induced by a shear force S on the tip, it
is convenient to employ the approximations sin θ ≈ θ and cos θ ≈ 1. These
assumptions yield the Euler–Bernoulli beam equation:

d2θ

dξ 2
− 1

EI
{S(L − ξ)} = 0. (2)

2.1.1. Compliance of angled microfibers. Euler–Bernoulli beam theory is used
to estimate the bending compliance of a fiber that has a natural deflection φ from
the normal to the supporting plane, denoted by n (see Fig. 2a). Loading the fiber tip
by a force F in the −n direction results in a shear force S = F sin φ. From (2) it
follows that the tip is displaced by an amount u in the −n direction and that F/u is
equal to the constant

k = 3EI

L3 sin2 φ
. (3)

Assuming that the tips are rounded and have a radius of curvature Rt equal to
the fiber radius, i.e. Rt = R, it follows from the Johnson–Kendall–Roberts theory
that the maximum tensile load on each fiber is F0 = 1.5πRWad, where Wad is
the interfacial work of adhesion [20]. This corresponds to a tip displacement
u0 = F0/k.

The mechanical behavior of an array of microfibers is characterized by an effective
elastic modulus Eeff, which relates stresses and strains. For a fiber density D,
Ref. [16] shows that

Eeff = kDL cos φ = 3EID cos φ

L2 sin2 φ
. (4)

Figure 2. The two principal beam bending models used are (a) the Euler–Bernoulli beam and (b) the
elastica models.
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For tokay setae, D = 1.44 × 1010 m−2, E = 1.5 GPa, L = 100 µm, R = 2 µm,
and φ = 45◦. Hence, Eeff = 115 kPa, which is well below Dahlquist’s limit for
tack (E < 300 kPa at 1 Hz) [21] and implies that the setal array has the compliance
necessary to exhibit pressure sensitive adhesion. Moreover, this result is consistent
with experimental measurements on natural setal arrays [16].

2.2. Ideal column buckling model

A column buckling model for gecko adhesion was first proposed by Jagota and
Bennison [22], but normal adhesion forces will be small without side contact.
Column buckling can be used to provide a low effective modulus. For vertical fibers
(i.e. φ = 0), (3) predicts that u = 0 for all F > 0. This result, however, is an artifact
of the linearization cos θ = 1. According to the exact solution to (1), displacement
along −n occurs when F exceeds a critical force Fcr. In general,

Fcr = π2EI

(KL)2
, (5)

where K is the effective length factor and depends on the buckling mode. According
to the ideal column buckling model,

u = 0 ⇐⇒ F < Fcr and u > 0 ⇐⇒ F = Fcr. (6)

2.2.1. Spherical indentation of microfibers. Figure 3a shows a fiber array pushed
upward into a spherical probe until the probe reaches some maximum depth of
penetration. Then the sample is retracted along the same path. This situation is

Figure 3. (a) Illustration of loading and unloading cycle for a spherical probe, and (b) mechanical
response of R = 0.3 µm non-adhesive fiber array indented by a spherical probe (radius = 5.17 cm);
(−−) theoretical predictions based on ideal column buckling for clamped–free (K = 2), clamped–
pinned (0.7), and clamped–clamped (0.5) buckling; (−) shows a fit using the Hertz contact theory
with Eeff = 6.5 MPa; arrows indicate loading direction.
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modeled with fibers of area density D, and acting as vertical springs with spring
constant k, as given in (3). The maximum distance a fiber can stretch before
detaching is then u0 = F0/k.

The height of the lowest point on the probe from the neutral plane of the fiber tips
is given by h, which is positive above the plane. Because the radius of the probe,
Rp, is large compared to the contact area, we can use a quadratic approximation to
find the distance from the probe to the fiber tip plane, h + hx = h + x2/2Rp. The
force applied to the fibers by the probe is

Fs =
∫ rc

0
2πxD(−k)(h + x2/2Rp) dx = −2πDk

(
hr2

c

2
+ r4

c

8Rp

)
, (7)

where rc is the contact radius, and positive values of Fs indicate compression.
This same expression for force applies both during loading and unloading. The
hysteresis, illustrated in Fig. 3b, arises due to contact hysteresis. During loading,
the contact radius is rc = √−2Rph, while during unloading the contact radius is
rc = √

2Rp(u0 − h). The maximum adhesion force during unloading is given by
Funload = −πRpDku2

0.
For vertical columns, the force measured by the probe is related to the critical

buckling load as Fs = 2πRpDFcrh. A typical plot of Fs/Rp versus h is presented
in Fig. 3b for a probe of radius 5.17 cm and an array of polypropylene microfibers
of length L = 20 µm, radius R = 0.3 µm, modulus E = 1 GPa, and density
D = 42 × 106 cm−2. This measurement is obtained using the optical force sensing
apparatus described in Appendix A.2. Among the various column buckling modes,
the clamped–free mode most closely matches the measured response, so setting
K = 2 in (5) gives a critical buckling load of Fcr = 39 nN. However, at lower
indentation the clamped–free mode overestimates the stiffness. This may be a result
of fiber length variation, which causes the array to be more sparse at heights close
to 20 µm. Regardless, the clamped–free buckling model is adopted as it produces
the best estimate for the mechanical response.

If one wants an exact fit to the loading curve, one can use the Hertz contact theory
[23] and adjust the effective elastic modulus, Eeff, to account for issues that the
buckling model neglects, such as fiber length variation. The Hertz model for a rigid
sphere indenting a planar, elastic surface with normal force F gives:

F = 4Eeff

3(1 − ν2)

√
Rph3. (8)

Poisson’s ratio, ν, is zero for fiber arrays because compressive strain is not
transmitted laterally. Figure 3b shows a fit of (8) to the loading curve. With probe
radius, Rp, set to 5.17 cm we find that Eeff = 6.5 MPa generates a very close fit of
the curve. This shows that the fibers are nearly 100 times more compliant than bulk
polypropylene which has E = 1 GPa. However, they are not compliant enough to
be considered tacky by Dahlquist’s criterion, so this is one possible reason why they
do not exhibit pull-off (normal) adhesion.
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2.2.2. Friction coefficient of microfiber array. Vertically aligned microfiber
arrays under compression can achieve compliance through buckling, allowing them
to exhibit a high resistance to frictional drag. This property follows from the
adhesion theory of friction, which states that the maximum shear force S for a
prescribed normal load F is proportional to the real area of contact Ar. For ideal
column buckling, (6) implies that the number of fibers in contact is approximately
N = F/Fcr and that the load on each contacting fiber is Fcr. Assuming rounded tips
of radius Rt, the contact area for each fiber is calculated from the JKR theory [20].

By Coulomb’s law, the shear strength of each fiber tip is Sf = µFcr + τAf, where
τ is the interfacial shear strength per unit area of real contact, and the equivalent
friction relation, V , is

V = µ̂F, µ̂ = µ + τAf/Fcr. (9)

Interestingly, (9) resembles Amontons’ law with the constant µ̂ as an effective
coefficient of friction. As shown in Fig. 4, (9) is consistent with measurements
of the coefficient of friction obtained for 0.3, 0.6 and 2.5 µm radius fibers under
loads as high as 10 kPa. It is assumed that Rt = 3R, since this gives the closest
theoretical fits for the geometries and loads of interest.

2.3. Elastica model

For axially loaded fibers undergoing large deflection (see Fig. 2b), the ideal column
buckling model must be replaced with the complete nonlinear solution to the
constitutive law (1). This solution involves the computation of elliptic functions

Figure 4. Plot of shear resistance versus applied normal pressure for polypropylene fiber arrays
and controls; (�) radius R = 0.3 µm, (") R = 0.6 µm, (�) R = 2.5 µm, (!) unprocessed
control, (�) processed control; (left) loading area = 1.27 cm2, sample size = 15; (right) loading
area = 0.033 cm2, sample size = 5; error bars represent one standard deviation in the data; solid lines
represent theoretical predictions for Rt = 3R. From [6].
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and is known as the elastica. Elastica theory is essential for modeling adhesion
through side contact.

2.3.1. Side contact model. The tensile compliance of fibers in an array of
vertically aligned carbon nanotubes (VACNTs) is explained with the side contact
model [12]. According to this theory, a fiber contacts an opposing surface by
bending over and adhering along its side [12, 24]. For sufficiently slender fibers, the
surface adhesion exceeds the elastic bending forces and allows stable side contact
even under tension. According to elastica theory, adhesion through side contact is
only possible when the fiber length is greater than the critical value, i.e.,

Lcr = π

2

√
EI

2ω
, (10)

where ω is the energy of adhesion per unit length.
The force necessary to detach a fiber engaged in side contact varies depending

on the translational constraints on the backing (see Fig. 5a) [12]. In the case
of a laterally unconstrained backing, the peel strength approaches the energy of
adhesion, ω, for L � Lcr. Interestingly, the peel strength is approximately three
times greater with a laterally constrained backing. The difference between the
two cases is analogous to peeling a piece of sticky tape from its end (laterally

Figure 5. (a) Shows how a fiber behaves during loading for laterally-constrained and laterally-
unconstrained backing. (b) Plot showing lines of constant pull-off strength, σ, in N/cm2 for arrays of
non-clumping fibers engaged in side contact, depending on elastic modulus, E, and fiber radius, R;
fibers have length Lcr and density Dcr; Wad = 30 mJ/m2 and ν = 1/3.
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unconstrained) versus its center (laterally constrained). When peeled from its center,
the peel angle is much smaller, resulting in a much larger peel resistance.

Consider an array of VACNTs of length L = 40 µm, outer radius R = 12.5 nm,
elastic modulus E = 200 GPa, and density D = 1014 m−2 [25]. Assuming a
Poisson’s ratio of ν = 0.3 and noting that Wad = 330 mJ/m2 [26], it follows
from (14) that ω = 0.83 nN. The peel strength is approximated as ω and 3ω for
the laterally unconstrained and constrained cases, respectively. Hence, 0.83 nN �
P � 2.5 nN, where P is the pull-off strength for a single fiber, and the total pull-off
strength of the array, σ = DP , is in the range of 8.3–25 N/cm2. Ref. [4] reports an
experimental pull-off strength of 10 N/cm2, well within the theoretical range.

In general, adhesion through side contact is only possible when L is at least on the
order of Lcr. For such structures, the pull-off strength is on the order of σ = Dω,
where the density D is limited by

Dcr = 1

(2R + �cr)2
, (11)

where the critical spacing �cr is presented in Section 4.1 for various clumping
models. Contours of constant σ as a function of R and E are presented in
Fig. 5b. Because of their low density, these structures exhibit less adhesion than
the MWCNT arrays studied in [4]. However, they will not clump over repeated
loadings and are thus reusable.

3. FABRICATION METHODS

3.1. Casting

Fiber casting consists of filling a mold with a given material. For example, the mold
used is a 20 µm thick polycarbonate filter (ISOPORE, Millipore Inc., Billerica, MA,
USA) generated by nuclear track etching to have a specific pore diameter across the
filter. The diameters range from 5.0 to 0.1 µm. Fig. 6a and b show that the filter can
either be filled with a thermoplastic (e.g. polypropylene (PP)), or a thermoset (e.g.
polyimide (PI)). Polypropylene films ranging in thicknesses from 25.4 to 4.0 µm
(Premier Lab Supply Inc., Port St. Lucie, FL, USA) are pressure driven into the filter
for 20–30 minutes at 200◦C in vacuum. Then, the filter is dissolved in methylene
chloride. For polyimide (PI-2611, HD Microsystems Inc., Wilmington, DE, USA),
the filter is filled through capillary action, and then the polyimide is cured in the
filter. After curing, overfill is removed by light sanding, and the filter is etched
away.

Alternatively, alumina membranes (Anopore, Whatman International Ltd., Maid-
stone, England) can be used in place of the polycarbonate. The alumina pores
provide higher aspect ratio, being 60 µm thick and having pore diameters of 0.2–
0.02 µm. Alumina filters can be etched by sodium hydroxide without causing dam-
age to the polymer fibers. Figure 6c and d show PP fiber arrays created from poly-
carbonate and from alumina filters, respectively.
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Figure 6. (a) PP casting and (b) PI casting in filters. (c) 0.8 µm diameter PP fibers created using
a polycarbonate filter. (d) 0.2 µm diameter PP fibers created using an alumina filter. Scale bars are
10 µm.

It is also possible to create a reusable mold by templating a master fiber array.
Figure 7a illustrates the process of curing poly(dimethylsiloxane) (PDMS) over a
master. Then, once the PDMS has cured, the master is removed and the mold can
be filled with polypropylene. After filling with polypropylene, the PDMS mold can
simply be peeled off and reused.

Nickel (see Section 3.2) and polyimide fibers have both been used successfully as
masters for templating at large diameters (�2.0 µm). However, at smaller diameters,
clumping and densely packed fibers prevent complete molding of the master. This
results in a PDMS mold that has short, irregular pores. Examples of arrays created
in PDMS molds are shown in Fig. 7. The larger diameter fibers in Fig. 7b turn out
very uniform, whereas the smaller diameter fibers in Fig. 7c look short and mottled.

3.2. Electrodeposition

Electrodeposition in alumina or polycarbonate filters can produce nickel fiber arrays
(Fig. 8a). As the figure shows, a filter is first attached to a conductive substrate
such as metal shim, conductive epoxy, or silver colloidal paste. The nickel anode
and filter are suspended in an electrolytic solution and voltage is supplied. Plating
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Figure 7. (a) Process for templating fibers. (b) 2.0 µm diameter PP fibers created from a 2.0 µm
diameter PI master. (c) 0.6 µm diameter PP fibers created from a 0.6 µm diameter nickel master. Scale
bars are 10 µm.

Figure 8. (a) Electrodeposition process used for making nickel fibers. (b) 2.0 µm diameter, 20 µm
long nickel fibers with spherical tips and (c) 0.6 µm diameter, 20 µm long nickel fibers with angled
tips. Scale bars are 10 µm.

occurs until the filter has been over-plated by approximately 50 µm. Finally, the
conductive substrate is removed and the filter is etched.
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After electroplating, but prior to etching, additional steps can be taken to produce
unique tip structures. One possibility is to use the freshly over-plated filter as a
cathode and continue plating. The newly exposed tips of the fibers will start to re-
plate, so by controlling the time, spheres of various sizes can be achieved (Fig. 8b).
Alternatively, if the filter is lightly polished with a sandpaper, the tips of the fibers
will become angled (Fig. 8c). These structures are interesting because, along with
the PDMS-templating mentioned above, it should be possible to make polymer
copies.

4. DESIGN CHALLENGES

When casting fibers, the quality of the array depends on the quality of the mold.
Because the filters have a random pattern of pores, a number of complications arise
from their use. We have identified some of these problems and devised methods to
lessen their effect.

4.1. Clumping

Clumping of fibers attenuates the adhesion of arrays by limiting a group of fibers’
ability to conform to a surface. Clumping of cast fibers occurs at any size scale
because of the random spacing of the pores used for molding. However, clumping
is markedly more severe as the aspect ratio of the fibers increases.

Using elastic rod theory, the critical spacing, �cr, between adjacent fibers
necessary to avoid clumping controlled by tip–tip adhesion (see Fig. 9a) is shown
in [27] to be

�cr−tip = 2FsL
3

3EI
= 2L3Wad

ER3
, (12)

where it is assumed that the tips are rounded and, following from the JKR theory
[20] for a sphere contacting a sphere, have a bond strength of Fs = 0.75πRWad,
where Wad is the work of adhesion per unit area. If contact is allowed along
the sides, as illustrated in Fig. 9b, then it follows from the principle of minimum
potential energy that

�cr−side = L2

3

√
2ω

EI
, (13)

where ω is the energy of adhesion per unit area of contact between adjacent fibers
[11]. For elastic cylinders,

ω = 6

{
(1 − ν2)R2W 4

ad

πE

}1/3

, (14)

where ν is Poisson’s ratio [12].
Equations (12) and (13) show that one strategy to avoid clumping is to simply vary

design parameters such as length, radius and elastic modulus. However, this affects
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Figure 9. (a) Tip–tip clumping and (b) side-contact clumping model. (c) Plot of lines of constant
adhesion pressure, Pad, in N/cm2 for a maximally packed array of fibers with prescribed length
and radius; (top) tip-tip clumping model, (bottom) side-contact clumping model. These data were
generated assuming polypropylene fibers, E = 1 GPa, Wad = 30 mJ/m2 and ν = 0.4.

the density of fibers and/or the fiber compliance and thus reduces the strength of
adhesion. These trade-offs can be evaluated by examining the pressure of adhesion,
Pad, that results from maximum packing and perfect contact of each individual fiber:
Pad = FoDcr, where Fo = 1.5πRWad comes from the JKR theory for a sphere
of radius R contacting a flat surface [20], and Dcr = (�cr + 2R)−2. The values
in Fig. 9c show that side clumping predicts a higher pressure. This results from
the difficulty in maintaining a side clump, allowing the fibers to be placed closer
together. Therefore, in a case where tip-clumping may be broken up during use, the
fiber array may be designed according to the side-clumping constraints.

An alternative to tuning parameters is to prevent initial clumping due to fabrica-
tion. This can be accomplished with critical point drying (CPD) [28]. After filling
of the mold is complete, the sample is etched in methylene chloride and transferred
to isopropanol, which is removed by CPD. The use of CPD eliminates the forma-
tion of a meniscus between fibers which could draw them into contact. Fig. 10a
shows a severely clumped array of fibers resulting from air drying while (b) shows
the unclumped result of CPD.

While CPD limits clumping due to air drying, it cannot disengage already joined
fibers. Therefore, fibers that are initially unclumped will start to adhere to one
another as use of the array brings them into contact. A few data points can be
acquired before the array becomes entangled. Figure 10c shows data from a CPD
sample of 0.2 µm diameter, 30–60 µm long polyimide fibers using the two-axis
force sensor (see Appendix A.2). The plot shows a pull-off force of almost 0.1 mN.
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Figure 10. SEM images of 0.2 µm diameter, 30–60 µm long polyimide fibers (a) without critical point
drying (CPD) and (b) with CPD (side views). Scale bars are 10 µm. (c) Shows pull-off measurements
for polyimide fibers similar to (b).

Dividing this value by the contact area of the probe gives an approximate pull-off
strength of 0.5 N/cm2.

4.2. Backing curvature

Warping and curvature is another hurdle encountered when casting thermoplastic
fiber arrays because of residual stresses in the substrate. The force needed to
overcome these stresses is typically more than can be balanced by the adhesion
force of the fibers. As a result, fibers, that might otherwise stick to the contacting
surface, are pulled away by the backing after the preload is released. This is partly
the reason why our previous hair patches that had a backing thickness of ∼50 µm
only showed remarkable friction [6], while our newer patches that have a backing
∼5–10 µm thick are showing attachment in shear under zero load (see Fig. 1b).

This problem can be stated more concretely by considering the fracture of the
adhesive bond between a naturally curved plate and a flat plate, as illustrated in
Fig. 11. The curved plates have width b, length 2L, thickness t and are assumed
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Figure 11. Flat plate in contact with (a) a convex plate or (b) a concave plate. (c) Plot showing the
critical radius of curvature, ρcr, for a plate with E = 1 GPa and Wad = 30 mJ/m2. If the radius
of curvature of a naturally curved plate is smaller than ρcr, then the plate cannot flatten by adhesion
alone.

to behave linear elastically with modulus E. Also, initial cracks of length a are
assumed to be present due to surface defects, poor initial contact, or some external
perturbation following attachment.

Kendall determined the critical radius of curvature ρcr for a naturally convex plate
to remain adhered to a flat surface by minimizing the total potential energy of the
system Ut = Uel + Wadab, where Uel is the elastic strain energy [29]. Following
from the stationary condition ∂Ut/∂a = 0,

ρcr, convex =
√

Et3

24Wad
. (15)

In the case of a naturally concave plate, the critical value ρcr is slightly different
since the delaminated portions are subject to clamped–pinned rather than clamped–
free edge conditions, as shown in Fig. 11. The concave solution is found by
modifying the Uel in Ut and solving ∂Ut/∂a = 0 for ρcr.

ρcr, concave =
√

Et3

48Wad
. (16)

Hence, a concave plate can tolerate a somewhat lower radius of curvature.
It is apparent from (15) and (16) that for a stiff material, changing the thickness

is an easy way to overcome the effects of substrate curvature. For example,
consider an array of polypropylene fibers (E = 1 GPa) that shows low adhesion
(Wad = 30 mJ/m2). Figure 11c shows that by changing the backing thickness from
50 µm to 5 µm, a sample that could not adhere to the flat surface if its radius of
curvature was less than 9 mm can now tolerate radii of curvature down to 0.5 mm.
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This change in tolerance could potentially allow a sample to show macroscale
adhesion instead of complete delamination.

5. CONCLUSION

Elastic rod theory and contact laws guide the design of adhesive and high friction
microstructures. As with natural setal arrays, these structures are composed of
stiff material with an elastic modulus E > 1 GPa. Unlike softer materials, such
as rubber and low molecular weight polymers, stiff materials have the advantage
of wear and creep resistance, and represent a wide range of polymers, metals and
ceramics. However, stiff materials lack the inherent compliance of softer materials,
and require additional levels of design complexity to lower their effective modulus.

For vertically-aligned, high aspect ratio nanofibers, compliance comes from buck-
ling, and high bond strength comes from side contact as described in Section 2.3.1.
However, such structures have the propensity to adhere to their neighbors, forming
large clumps, according to the theoretical models presented in Section 4.1, which
show dependence upon fiber geometry, elasticity, surface energy and spacing. Fur-
thermore, relying on buckling necessitates large preloads [4].

Microfibers have less tendency to clump since their elastic restoring forces often
exceed the surface forces necessary to adhere to neighbors. This property, however,
implies that microfibers are unlikely to adhere to an opposing substrate through
side contact, so the adhesive bond of the fiber is dependent upon the small contact
allowed by a rounded tip. Nonetheless, microfiber arrays can exhibit high friction,
with a friction coefficient several orders of magnitude greater than that of the smooth
material under pressures ranging from 0 to ∼10 kPa. This phenomenon is explained
in Section 2.2.2 with a fiber buckling model that is experimentally validated for
various fiber geometries and loading conditions. However, the experimental fit to
the Hertz contact model (Section 2.2.1) shows that the needed compliance for tack
is not present in these fiber arrays.

Further compliance could be added during fabrication. Fabrication methods
include polymer casting and electrodeposition and utilize a porous filter as a mold.
Such methods yield arrays of microfibers that are similar in size and elasticity to
natural gecko setae. The main differences, however, are a lack of compliance
and specialized tips. Angling of fibers, like those shown in Fig. 8c, can generate
extra compliance as demonstrated for the gecko in Section 2.1.1. For microfiber
arrays that rely on tip contact, the development of tip structures could be critical for
increasing contact area. Figure 8b gives an example of spherical tips, but spatular
tips, like those of the gecko, should also be explored.

The interaction of fibers with their backing, as discussed in Section 4.2, is a basic
example of how hierarchical structures can affect the overall compliance. The fiber
backing is analogous to lamellar structures found in the gecko. By modifying the
thickness of the backing, samples that show high friction are also able to show shear
adhesion (see Fig. 1).
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Simple vertically aligned fibers show novel friction properties, but they provide
only marginal pull-off adhesion properties. Future higher performance designs
will require enhanced overall compliance through angled fibers and hierarchical
structures, as well as greater intimate contact through spatula-like terminals.
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APPENDIX A: TESTING

A.1. Pulley

Static friction as well as pure shear measurements are performed on a pulley
apparatus like that shown in Fig. A.1a. A string attached to the back of the fiber
array is run over a pulley and attached to a cup that allows incremental loading.
The sample is placed on an acetone-cleaned glass slide where it is loaded by a brass
weight. Figure 4 shows high friction data taken with this setup.

A.2. Two-axis force sensor

A two-axis force sensor system, Fig. A.1b, was developed to simultaneously
observe the shear and normal forces generated by a fiber array. The system
uses a spherical glass probe, which was chosen to eliminate problems arising
from misalignment between a flat probe and sample, a simple alternative to more
elaborate self-aligning systems [30]. It also provides a convenient comparison to
JKR theory. The probe is mounted on a two-axis mechanical spring constructed
from four double-cantilevers as shown in Fig. A.1b. Double cantilevers were
chosen because, unlike single cantilevers, they do not couple tip deflection with tip
rotation. The particular arrangement of four double-cantilevers was chosen so that
two optical probes (MTI-2100 fiber optic measurement system with MTI-2062E
edge probes, MTI Instruments, Albany, NY, USA. Resolution — 44 nm at 1 kHz,
Range — 190 µm) could each measure displacement along a single axis while
mounted on mechanical ground. The sample is mounted on a nanopositioning stage
(P-611 Nanocube, Physik Instrumente, Irvine, CA, USA. Resolution — 10 nm,
Range — 100 µm). The resolution and range of the system (70 µN, 160 mN) are
determined by the spring constant of the double cantilever force sensor (axis 1:
1600 N/m, axis 2: 1400 N/m) in combination with the range and resolution of
optical sensor and nanopositioning stage. Figures 3b and 10c both show data that
were taken using this apparatus.
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(a)

(b)

Figure A.1. Test equipment. (a) Pulley setup and (b) two-axis force sensor with spherical probe.


