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We examine the flexural deformation and snap-through instability of a pre-buckled
ferroelastomer beam. The beam is composed of ferromagnetic and electrically conductive
microparticles suspended in a polydimethylsiloxane (PDMS) matrix. Bending and snap-
through are controlled remotely with an external magnetic field. The observed magneto-
flexural coupling is in reasonable agreement with predictions from an analytic model
based on elastic rod theory and variational techniques. Moreover, such coupling results
in stable and unstable bending modes that can be exploited for a soft-matter, field-
controlled, reconfigurable electrical relay. These two flexural modes correspond to (i) low-
power binary (stable) switching and (ii) a more rapid >10 Hz response that is achieved
by momentarily driving the beam to a slightly deformed configuration. This combination
of stable and unstable switching states provides a new approach for harnessing elastic
instabilities and a means to create a low power, yet rapidly responsive switch for soft
electronic systems.
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1. Introduction

Wearable computing and soft bio-inspired robotics de-
pend on elastically deformable electronics that match
the mechanical properties of natural biological tissue [1,
2]. Stretchable circuit wiring and “artificial skin” sensing
is currently accomplished with soft elastomer compos-
ites [3], soft microfluidics [4], and a variety of determin-
istic architectures involving wavy patterns and microscale
geometries [5]. The latter approach typically exploits elas-
tic instabilities such as buckling and wrinkling [1]. In ad-
dition to stretchable electronics, these elastic instabili-
ties have also been used for adhesion and wetting con-
trol [6-8], shape-programmable origami [9,10], valves for
manipulating fluid flow [11], reversible fluidic encapsu-
lation [12], and elastocapillary snapping [13]. The dy-
namic loss of elastic stability and beam snapping has pro-
vided opportunities for pneumatic actuation [ 14], voltage-
controlled dielectric elastomer actuators [15,16], and the
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control of optical properties through snapping microlens
structures [ 17]. Moreover, buckling and snap-through gov-
ern dynamic elasto-morphological coupling in a variety of
biological mechanisms. These include morphogenesis of
the Volvox embryo [18], catapult-like ejection of fern spo-
rangia [19], and the thigmonastic movement of the Venus
flytrap (Dionea plants) [20]. For these engineered and bio-
logical systems, elastic instabilities have a central role in
enabling stretchable functionality or reducing the ener-
getic barrier for achieving dramatic changes in shape or
morphology.

In this manuscript, we demonstrate the ability to
exploit elastic instability for physically reconfigurable
soft electronics. This is accomplished with a soft elastic
switching element (Fig. 1(a)) that undergoes a buckling
instability in response to an external magnetic field
(Fig. 1(b); Movie S1 in SI). The switch is composed
of a pre-buckled ferromagnetic elastomer beam that
reversibly controls the electrical conductivity between
a source and drain electrode. External magnetic field
is used to induce either temporary deflection or snap-
through between bistable states, allowing for two modes of
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Fig. 1. (a) Model of the bilayered ferroelastomeric beam in a pre-buckled state (b) Doubly clamped bistable ferroelastic beam undergoing snap through
(left to right) from one stable configuration to the other under the influence of an increasing external magnetic field (see Video S1 in the SI, Appendix
A). (c) Demonstration of a soft, flexible switch by magnetically snapping a ferroelastomer beam (see Video S2, Appendix A) to open and close a circuit, as
illustrated by turning on and off an LED. The schematics show the open and closed circuit states. (d) Normalized conductivity (G/Go) of the circuit showing
the change in electrical conductivity as the beam is snapped in and out of a closed configuration.

electrical switching behavior. We examine both through a
combination of experimental observations and theoretical
modeling based on elastic beam theory and variational
techniques. The theory furnishes stability criteria that not
only inform switch design but also allows us to predict the
influence of subsequent stretch and external mechanical
loading on switch response.

This work builds on previous studies on snap-through
buckling instabilities [21-26] as well as the magneto-
elastostatics of so-called magnetorheological (MR) elas-
tomers. MR elastomers are composed of a dispersion of fer-
romagnetic microparticles (typically Fe, Ni, Co, or their al-
loys) suspended in an elastomeric matrix [27-31]. In this
study, a prismatic strip of MR elastomer is coated with a
layer of elastomer embedded with a percolating network
of Ag-coated Ni microparticles. This conductive layer func-
tions as a “gate” electrode that controls electrical connec-
tivity between a pair of “source” and “drain” leads. The
influences of composition on the magnetic, electrical, and
mechanical properties of both the ferromagnetic and con-
ductive elastomer composites are well understood [32-
35]. There has also been growing interest in applying fer-
romagnetic elastomers for soft robotic sensing and actua-
tion. This includes flexural elements for bending actuation,
magnetically-powered origami, and a crawling soft robot
cable of field-activated “self-locomotion” [36].

We begin by presenting the methods for fabricating
an MR elastomer composite and field-activated switch

in which the composite beam forms reversible electrical
contact with a pair of source/drain leads (Fig. 1(c), (d);
Movie S2). The leads are composed of liquid-phase eutec-
tic gallium-indium (EGaln) alloy sealed with an anisotrop-
ically conductive “z-film” elastomer that is only conduc-
tive through its thickness [37]. The response of the ferro-
magnetic beam to external magnetic field is found to be in
reasonable agreement with theoretical predictions based
on elastic rod theory and principle of minimum potential
energy. In particular, the theory can be used to predict the
proximity of the magnet at which snap-through instability
occurs.

2. Experimental

The switching element shown in Fig. 1(a) is composed
of two layers of elastomer composite. The top layer is a
80 pm thick strip of polydimethylsiloxane (PDMS) elas-
tomer (Sylgard 184; 10:1 base-to-catalyst ratio; Dow Corn-
ing) embedded with 70% w/w Fe microparticles (spherical,
diameter <10 pwm; Alfa Aesar). The bottom layer is 30 pm
thick and composed of PDMS embedded with 85% w/w
Ag-coated Ni microparticles (~15 pm; Potters Industries).
Both layers are prepared by shear mixing the uncured
PDMS and microparticles with a stirring rod for 5 min. The
Fe-PDMS layer is deposited using a thin-film applicator
(ZUA 2000; Zehntner Testing Instruments). The elastomer
is then partially cured at 70 °C for 20 min. Next, a layer of
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Fig. 2. Layup and fabrication method for the switch implementation. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Ag-Ni-PDMS is deposited over the Fe-PDMS film and the
composite is then fully cured at 70 °C for 90 min. The com-
posite sheet is patterned into strips using a CO, laser (VLS
3.50; Universal Laser Systems). Each strip has total dimen-
sions of t = 110 wm (thickness), L = 15.4 mm (length),
and b = 5 mm (width). It is assumed that the dispersion of
the particles is random but statistically uniform through-
out the volume. Both layers are ferromagnetic and only the
Ag-Ni-PDMS layer is electrically conductive. The Fe-PDMS
layer functions as the magnetically-powered actuator layer
while the Ag-Ni-PDMS is used as the gate electrode for
electrical switching.

2.1. Switch fabrication

The layup and fabrication method of the switch is
presented in Fig. 2. First, we prepare a thin film substrate
of PDMS (300 pwm) and allow it to cure at 70 °C. Next, we
lay down green masking tape (LaserTape; IKONICS Imaging
Inc.) that is patterned with a CO, laser and deposit a thin
film of liquid-phase eutectic gallium-indium alloy (EGaln,
99.99% pure; Sigma-Aldrich). Removing the masking tape
leaves behind 4 mm wide EGaln traces that will function as
a pair of source/drain electrodes. To prevent leakage, these
liquid electrodes are sealed with a layer of Ag-Ni-PDMS
conductive elastomer. Prior to curing, laser-patterned
squares of conductive non-woven fabric (3M CN-3490) are
placed on the surface of the elastomer, directly above the
lead terminals. These will function as contact pads that
make reversible electrical contact with the Ag-Ni-PDMS
layer of the composite beam.

To prevent electrical conductivity between the
elastomer-embedded EGaln electrodes, a magnetic field
is applied as the Ag-Ni-PDMS seal cures. This is accom-
plished by placing the sample above a permanent mag-
net (NdFeB; K&] Magnetics, Inc.) while it cures in an oven

for 45 min at 70 °C. The magnetic field causes the Ag-
coated Ni particles to self-assemble into vertically aligned
columns. This results in an anisotropically conductive “z-
film” elastomer that is only conductive through its thick-
ness (e,). A coin cell battery holder (BU2032SM-HD-G,
Digi-Key Electronics Inc.) and LED (DEV-10754 ROHS, Lily-
Pad LED Micro—Red, Sparkfun Inc.) is mounted to the sur-
face of the Ag-Ni-PDMS seal during curing. After the seal is
cured, the substrate is stretched and bonded to the ferroe-
lastomer switch. The switch itself is composed of the fer-
roelastomer strip supported by two vertical PDMS posts.
The posts are bonded to the pre-stretched substrate using
a silicone adhesive (Sil-Poxy; Smooth-On Inc.). Once the
beam is bonded firmly onto the posts, the substrate is re-
leased and the beam undergoes compression and buckling.

2.2. Critical magnet distance for snap-through

Snap through occurs when the vertical distance d
between the supports of the ferroelastic beam and the
surface of an external magnet (2” x 2” x 1/4” NdFeB
magnet; K& Magnetics, Inc.) reaches a critical value
de. This critical separation is determined by vertically
lowering the magnet towards the beam, which is initially
buckled away from it. The magnet is mounted on to
the travel head of a materials testing system (Instron
5969) and is lowered at a rate of 10 mm/min. The d
values are measured from a video analysis and modeling
software (Tracker, Inc.) of video recordings of the beam as
it transitions from one stable state to the other.

3. Principles & theory
The snap-through instability demonstrated in Fig. 1 can

be explained by an analytic model based on elastic rod
theory and the principal of minimum potential. Referring
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Fig.4. Variation in the magnetic force density f of the permanent magnet
with vertical distance y from the testing face to the point of measurement,
B = 822.6 is the fitting parameter.

to Fig. 3, the beam is initially straight with the supports
separated by the natural length L, of the beam. Next, the
separation is reduced to £ < Ly, which causes the beam
to compress and buckle. From this pre-buckled reference
state, the deflection of the beam is controlled with an
external force-inducing field (e.g. gravitational, magnetic,
electrostatic). At each point in the beam, this field exerts
a force density f = fe,, where e, is the unit vector along
the beam’s minor axis and f has units of N/mm>. When
the field source is located at a nominal distance y above
the supports, the force density is expected to scale with
y' i.e.f = By", where § is a fitting parameter associated
with the choice of the field source. In this study, a magnet is
centered a distance d above the beam supports, has a N/S
orientation aligned with the beam’s minor axis (e,), and
the force density is measured to scale as y~3/? (Fig. 4; see
also Sec. S1 in the SI).

3.1. Kinematics

Prior to buckling, the beam has a natural length Lo,
width b, thickness t, and cross-sectional area Ay = bt. The
variable x € [0, Ly] represents the axial coordinate in the
Lagrangian (natural, undeformed) description. Although
the beam is composed of two layers, it is convenient to

treat it as a uniform elastic rod with uniform density p,
Young’s modulus E, and flexural rigidity D = Ebt3/12.
Referring to Fig. 3, beam deformation is described by pure
bending, during which the arclength Ly remains fixed and
cross-sectional elements along the beam have a vertical
deflection w = w(x). For a given end-to-end separation ¢,
it is convenient to define a horizontal stretch A = ¢ /Lo.
In this way, % and w(x) can be related by the following
isoperimetric constraint:

N B

A= —=— J1—widx. (1)
Ly LoJo '

The clamped-clamped supports also prevent vertical
displacement and rotation at the ends:

w(0) = wx(0) = w() = wx(¢) =0. 2)

The subscript , denotes the derivative w.r.t. the coordinate
X.

We restrict w to approximations of the form w =
a1 + aa¢,. Here, {¢1, ¢,} are linearly independent ba-
sis functions and {«, a,} are the corresponding weight-
ing coefficients. For the basis functions, we selected mode
shapes that are in qualitative agreement with experimen-
tally observed deflections (see Sec. S2 of the SI):

1 27X
=3(2)
_ 4 2TX 2TX
¢2—3‘/§SIH<LO>{1—COS (?>} (4)

Substituting this approximation for w into (1) yields a

relationship between the unknown coefficients oy and «;.

3.2. Potential energy

In general, the load per unit length (f;) and total
potentially energy (U) associated with the external force-
inducing fields have the form

fo=_qe(d—w), 5)
&

Lo
e +1
U= E d — w)P$ " dx. 6
z fo P§+1( W) ®)

Here, q¢ is the coefficient of the field load which is
dependent on the flexural and material properties of the
beam, d is the distance between the source of the field
and the beam mid-plane, and p describes the dependency
between the force density and the distance between the
source and each point on the beam. For our system, the
beam is subject to only gravitational and magnetic loading.
The coefficient of the gravitational load can be represented
as qg = pAog, where p = kpm + (1 — k)p, is the
average specific density of the composite and g is the
gravitational acceleration. Here, k is the mass fraction of
the ferromagnetic particles and p,, and p, are the specific
density of the particles and elastomer, respectively. The
coefficient of the magnetic load is defined as g, = BAo,
which is independent of the beam deflection. For the
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Fig. 5. Numerical (blue) and analytical (red) results for the relative variation in the potential energy along the “valley” under (a) sub-critical magnetic
load (d = 21 mm) and (b) post-critical magnetic load (d = 30 mm), with local and global minima indicated (numerical (red dot) and analytical (green

dot)). The value of the coefficient of magnetic load is g, = 0.452 mN m
referred to the web version of this article.)

gravitational load and the magnetic load, the values of p,
and p,, are 0 and —3/2, respectively.

At static equilibrium, the elastic deformation of the
beam is determined by extremizing the total potential
energy functional I7 = [I1(X, w). The potential IT is
composed of the elastic strain energy (from bending), and
the energy associated with gravity and magnetic field.

b1 2q
— 2 m
17_/0 {EDw,XX—i-qgw— (d—w)”z}dx' (7)

To obtain an approximate solution for w, we first apply
the isoperimetric constraint in order to eliminate «; and
express w and I7 only in terms of «,. Next we determine
the value of &, at which [T is stationary (i.e. d/7/day; =
0). Lastly, we compute the second variation dI7/de;
to determine whether the solution is stable (i.e. IT is
locally minimized). Numerical solutions are obtained in
MATLAB (R2015a; The Mathworks, Inc.) and an analytic
approximation is obtained by performing Taylor series
expansions on (1) and (7).

3.3. Approximation

To obtain an approximate scalar function for the
potential IT ~ IT(a, ay), we substitute the expression
for w = w(wy, @y) into (7) and perform a Taylor series
expansion (see Sec. S2):

Dr* 320 Loggaq
T~ (@24 252002 ) 4 200
L ( 27 2) 2

Loqm | aq 1
- {— T28d (8107 + 803)
+ 1152d2 (45075 + 112042)} (8)

Next, o is estimated from a Taylor series approximation of
the unilateral constraint (1):

12
iy = (L (15— 22 (©)
o= T 27 % )

12

. (For interpretation of the references to color in this figure legend, the reader is

For our analysis, the beam is initially buckled away from
the source of the magnetic field and therefore, we consider
the beam to have a negative value of &;. ~

Substituting (9) in (8), we obtain IT = II(ay),
which must be locally convex at stable equilibrium. In the
absence of magnetic and gravitational load, d*IT*/da3 ~
128714EI/9L3 > 0, which implies that the buckled shape
o1 = dq, a = 0 is elastically stable. However,
applying an increasing magnetic loading in the direction
opposite of the deflection will cause the second variation to
decrease until the stability criterion is no longer satisfied.
Of particular interest is the critical separation of the
magnet from the midplane (d.) at which snap-through
occurs. This is obtained by finding the solution of d to the
condition d*IT* /da3 = 0:

327 g 12 , 19 am Lo
B A B
65 qm LO 2 N1
=2 (Z) q=x1"?
18 wd3/? <d> ( )
32 Eb3n* 327w N
ET—F?qg(]—)\) =0. (10)
0

4. Results

To understand the behavior of the bistable beam as
it changes configuration from one stable state to the
other after undergoing snap-through, it helps to examine
the following cases separately: (i) deflection under low
magnetic loading, and (ii) snap-through instability. For
this analysis (see Fig. 5), we used the following system
parameters: p, = 8000 kg m~3, p, = 965 kg m~3, k =
0.8,E = 6.0MPa, 8 = 822.6 Nm*?,q,, = 0.452mNm'/?,
Ly = 154 mm,b = 5mm,t = 110 wm, and A=
0.9. In Fig. 5, the curve corresponding to the numerical
solution was generated by solving (1) in MATLAB (R2013a;
The Mathworks, Inc.) using the native integral and fsolve
functions. In contrast, the curve corresponding to the
analytical solution was generated from the approximation
for «q given in (9). Corresponding values for g, and d are
provided in the figure caption.
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Fig. 6. (a) Critical distance d; versus A = £ /Ly and (b) critical non-dimensional magnetic loading Qm = qmLo/EAoder

3/2

versus i = £ /Ly for the analytical

model (solid) and experimental calculations (markers). As the magnet approaches the downward deflected beam, d.; corresponds to the critical distance
at which snap-through is induced. At this critical distance, Q,, corresponds to the normalized load exerted on the beam. As expected, d.; decreases and Qy,
increases, respectively, as the resistance to snap-through increases with increasing pre-buckled deflection (i.e. decreasing A).

4.1. Sub-critical load

Prior to introducing the magnet, the beam is observed
to either deflect up or down and adopt the first mode shape
¢4 (i.e. ap = 0). This corresponds to the conventional bi-
furcation instability associated with compressive preload
and buckling. Next, suppose that a magnet is placed on the
side opposite the direction of deflection. According to the
approximate theory the beam will not deflect from its pre-
buckled state so long as d > d.,. However, in practice we
observe a modest decrease in amplitude |oq| due to the
elastic compressibility of the magnetically loaded beam.
Such deformation is reversible and the beam will spring
back to its original deflection when the magnet is removed.
As described below in Section 4.3, this sub-critical loading
can be exploited for a high frequency relay in which elec-
trical contact between the source/drain electrodes is only
temporarily broken when a magnet is applied. It is impor-
tant to recognize that for such applications, the theory will
need to be modified to account for the unilateral contact
with the electrodes.

4.2. Post-critical load

Again suppose that the beam is initially deflected away
from the magnet. As the magnet is brought closer to the
beam, d will eventually reach the critical separation d,
necessary to induce a snap-through instability. During
snap-through, o, becomes non-zero and the beam exhibits
a linear combination of the first and second bending
modes. Referring to Fig. 5(b), these transitional values of
o1 and «r; correspond to the path along which the decrease
in IT is steepest. An analogous behavior is observed in
the study of diatomic molecules, where such a transition
is referred to as the lowest-energy pathway or intrinsic
reaction coordinate (IRC) curve [38]. These correspond
to physical “transition states” or configurations that the
momentarily beam adopts as it approaches its stable state.

Fig. 6(a) shows the dependency of d. on A= L/Ly
for the analytical model. Greater axial compression (lower
}:) results in a greater initial downward deflection and
larger mechanical resistance to snap-through. Therefore,

the magnet must be in closer proximity to the beam in
order to generate the magnetic load necessary to induce
the instability. Another way to examine this is the change
in magnitude of the corresponding critical magnetic load,
Qm, which is non-dimensionalized with respect to flexural
rigidity and d.;:

O = q’"Lf/z. (11)

EAOdcr

For given beam dimensions (L, Ap), elastic modulus E,
and magnet distance d, it follows that stretching the beam
from its buckled state (thereby decreasing the compression
and consequently, increasing ):) reduces the magnetic
load required to induce snap-through instability. Also, a
more rigid beam (i.e. larger EAq/Ly) will require a greater
nominal load ¢q,,,/ dfr/ % This is consistent with the intuition
that a larger initial deflection away from the magnet and
greater flexural rigidity of the beam will both increase
resistance to snap through. As shown in Fig. 6(b), the
curve intersects the x-axis at A = 1. This arises from
the assumption that the rod is inextensible/incompressible
and only undergoes flexural deformation.

4.3. Switch implementation

A principle feature of the pre-buckled ferroelastomer
switch is its ability to exhibit either reversible or snap-
through responses when subject to magnetic loading
(Fig. 7(a)). When snapping between the two stable
configurations, we demonstrate the ability to reversibly
switch between closed and open circuit states. In this
case, the magnetic field is only necessary for switching.
However, when a low oscillatory magnetic field is applied,
the beam exhibits temporary and reversible deformation.
In this case, removing the field causes the beam to spring
back to its original deflection. This response corresponds to
a higher frequency switching mode that rapidly oscillates
between an open and closed circuit. This fast switching
behavior is demonstrated in Fig. 7(b), where the switch
is activated with a sub-critical magnetic field. After one
second of reversible switching, the magnetic field is
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Fig.7. (a)Schematic representation of the three states during fast switching. (b) Experimental data showing fast switching between the stable-closed and
reversible-open states for 1 s followed by a snap through transition to the stable-open configuration. (c) FFT of the data in part b showing the strong peak

at 10 Hz switching frequency.

increased such that d < d. This causes snap-through
to the permanently open circuit. By taking a Fast Fourier
Transform (FFT) of the conductivity data (Fig. 7(c)), we see
a strong peak at 10 Hz, which we designate as the primary
switching frequency. This frequency was limited by our
experimental setup, and further investigated into the
limits of the high frequency switching could be explored
by varying geometry and material parameters.

5. Discussion

In this work, we demonstrate an implementation of
a switching element in a flexible circuit by utilizing
the buckling instabilities of a bistable ferroelastomer
beam. For a given set of material and dimensional
properties, the behavior of the beam is studied for a
variety of magnetic loading conditions. Depending upon
the operational requirements of the switch, there are
certain considerations that need to be accounted for while
designing and fabricating the beam for the switching
element. For example, the elastic modulus E of the beam
is influenced by the volume fraction of rigid microparticles
and the modulus of the elastomer matrix. In particular, it
follows from (10) that d.; decreases with modulus. This
is consistent with physical observation—more rigid beams
are more resistant to snap-through instability.

It is also expected that as A decreases, the amount
of magnetic load required to induce snap-through also
increases for the same nominal gap. This is supported by
the experimental results shown in Fig. 6 and suggests that
a switch will become less resistant to snap-through as
the buckling induced compression is reduced. When the

non-dimensional magnetic load exceeds 0Oy, the beam will
undergo snap-through. Below this value, the deflection is
reversible, i.e. the beam will return to its original shape
when the magnetic field is removed. This has important
implications when selecting thresholds for the magnetic
loads used to excite reversible and permanent switching
responses.

The pre-buckled ferroelastomer beam bears some re-
semblance to switch designs used in the microelectrome-
chanical systems (MEMS). In MEMS, actuation schemes can
broadly be classified into the following categories: elec-
trostatic, piezoelectric, thermomechanical, and electro-
magnetic. Despite its immense popularity and low power
consumption, electrostatic actuation requires high pull-in
voltages and generally results in small displacements. Al-
ternatively, thermomechanical loading is capable of gener-
ating large displacements with high forces, but its power
requirements are correspondingly large for slow response
rates. Piezoelectric actuation is promising but required
rigid materials that are no capable of being stretchable. In
contrast, electromagnetic actuators are capable of rapidly
producing adequate forces and displacements with rela-
tively low mechanical work input and can be produced
with soft materials. Here, we show that such low power
functionality can be accomplished with bistability and the
use of a permanent magnet.

6. Conclusion

We have introduced a soft reconfigurable electrical
contact that utilizes magneto-flexural coupling and snap-
through instability. This switch is composed of a pre-
buckled ferroelastomer strip that deforms in response
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to an external magnetic field. It exploits snap-through
mechanics in order to transition between an open and
closed-circuit configuration. For low magnetic loads, there
is a second switching mode—the circuit is only temporarily
opened when field is applied and returns to being
closed when field is removed. The switch response is
explained with an analytic model derived by applying the
Rayleigh-Ritz method to examine the static equilibrium of
a ferromagnetic elastic rod. A key result of this analysis is
a stability criterion that relates a non-dimensional critical
magnetic load for snap-through Q. with the ratio A = ¢ /Lo
of the support separation and beam length.

Acknowledgments

The authors wish to thank Tong Lu (Soft Machines
Lab; CMU) with assistance in selecting a composition
for the anisotropically conductive “z-PDMS” film. This
work was partially supported by a NASA Early Career
Faculty Award (Grant #NNX14A049G) and ONR Young
Investigator Award (Grant #N000141210614; Code 34;
PM: Dr. Tom McKenna).

Appendix A. Supplementary data

This manuscript is accompanied with details of the
method for measuring magnetic field and fabricating
the electrical switch. Videos showing the snap-through
instability and switch response are also include.
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found online at http://dx.doi.org/10.1016/j.eml.2016.08.
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