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Abstract
A comprehensive theory addresses the potential for nanoscale energy harvesting with an array
of vertically aligned zinc oxide (ZnO) nanoribbons. Through shear-mode piezoelectric
coupling, the nanoribbons are capable of generating electricity from elastic deformations
induced by sliding friction or mechanical vibration. In contrast to current ZnO nanowire
generators, nanoribbons exhibit a unique combination of geometry and poling orientation that
eliminates the need for a nanostructured cathode and allows electrodes to be permanently
bonded to the array. The theory incorporates principles and design constraints from solid
mechanics, electrostatics, piezoelectricity, vibration dynamics, circuit theory, and tribology. The
accuracy of the approximate algebraic solutions is evaluated with finite element modeling. For
geometries and operation modes of interest, the electrical power output and conversion ratio
from mechanical power input are limited to ∼10 nW mm−3 and 1000:1, respectively. While
modest, such numbers provide a proper perspective on the potential for nanopiezoelectric
energy harvesting.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Nanopiezoelectric energy harvesting (NPEH) represents a new
and potentially important branch of nanotechnology [1, 2].
One aim of NPEH is to embed materials, such as textiles [3],
with nanosized generators that convert otherwise wasted
mechanical energy into electricity. Another potential for
NPEH is to allow nanoelectronic and nanoelectromechanical
(NEMS) systems to be self-powered, analogous to the aim of
piezoelectric energy harvesting for larger scale systems [4].

NPEH was recently reported with arrays of vertically
aligned zinc oxide (ZnO) nanowires that convert sliding
friction into electricity [5]. While this represents a promising
first step, theory suggests that such a design may be
improved by replacing the nanowires with nanoribbons. As

illustrated in figures 1(a) and (b), ZnO nanoribbons [6, 7]
are piezoelectrically poled along their thickness and so elastic
deformation from interfacial sliding or vibration will induce
an electric potential drop across the length. For an array of
vertically aligned nanoribbons, electricity can be generated by
simply placing electrodes on opposite sides of the array. In
contrast, ZnO nanowires generate a potential drop across their
thickness and so electric current can only be generated through
a nanostructured electrode that allows tip contact without
causing an electrical short [5].

In this paper we introduce a theoretical model that
predicts the electrical power generated by an array of vertically
aligned ZnO nanoribbons subject to either sliding friction
or vibration. The magnitude of mechanical power input is
constrained by the strength and excitation characteristics of the
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Figure 1. (a) ZnO nanoribbons have a wurtzite crystal lattice with
piezoelectric poling through the thickness. They have a thickness
H ∼ 10 nm, width w ∼ 100 nm, and length L ∼ 1–100 μm. (b) An
array of vertically aligned nanoribbons can convert elastic
deformations from sliding friction or mechanical vibration into
electricity. This is accomplished through shear-mode piezoelectric
coupling, which induces a gradient in electric potential along the
ribbon length.

nanoribbons. The proportion of mechanical power input that
is converted to electrical power is controlled by geometry and
the material constants for shear-mode piezoelectric coupling.
These relationships are established through a comprehensive
theory that incorporates continuum elasticity, piezoelectricity,
vibration dynamics, circuit theory, and tribology. Approximate
algebraic solutions to the governing equations are used to
derive scaling laws and design criteria.

In addition to exploring the potential of ZnO nanoribbons
for NPEH, this analysis addresses the more general topic
of piezoelectric energy harvesting (PEH) through shear-
mode piezoelectric coupling. Current methods for PEH
use elongational e31 and e33 coupling to generate electricity
from a bending cantilever [4]. These systems, however,
require composites of two or more layers that are difficult to
replicate with current vapor deposition techniques for single
crystal nanostructures. With shear-mode coupling, lateral
deformations can induce an electric potential drop across a
single crystal. The dual to this mechanism had previously been
explored with shear-mode actuators [8–10].

The system parameters and governing equations are
presented in section 2 along with a comparison to the results
of a finite element simulation. The theoretical results are used
to predict the power output and performance of an array of
nanoribbons subject to either sliding friction (section 3) or
vibration (section 4). The paper closes with a brief discussion
(section 5) and conclusion (section 6) that summarize the
results and remark on their implications for NPEH.

2. Theory

ZnO nanoribbons are flat, ribbon-like, single crystals that have
a thickness H ∼ 10 nm, width w ∼ 100 nm, and length
L ∼ 1–100 μm [6]. Because of the orientation of its wurtzite
crystal lattice, a nanoribbon is piezoelectrically poled through
its thickness.

As illustrated in figure 1(b), the nanoribbons form an array
in which they are vertically aligned and spaced a distance
ξ apart. When the array is dragged against a surface or
mechanically vibrated, the ribbons will elastically deform in
the lateral direction. Because the thickness H is typically
an order of magnitude less than the width w, analysis will
henceforth be limited to planar deformation along the thickness
and width directions.

2.1. Kinematics

The unit vectors e1 and e3 are oriented along the length and
thickness directions, respectively. In other words, {e1, e3} form
an orthonormal basis where e3 coincides with the e33 poling
direction. Points in the ribbon are uniquely identified with their
position X = x1e1 + x3e3 in the undeformed configuration.
Here, the coordinates x1 and x3 are defined on the intervals
[0, L] and [−H/2, H/2], respectively.

Under mechanical loading, the ribbon deforms elastically
to a final configuration x = X + u, where u = u1(x1, x3)e1 +
u3(x1, x3)e3 is the displacement vector. Assuming small
displacements, this corresponds to an elastic strain field

γ = 1
2 {∇u + ∇u�}, (1)

which has components

γ11 = ∂u1

∂x1
γ33 = ∂u3

∂x3

γ13 = 1

2

(
∂u1

∂x3
+ ∂u3

∂x1

)
.

(2)

2.2. Constitutive laws

For a piezoelectric material, the second-order strain tensor γ is
coupled to the second-order stress tensor T, electric field vector
E, and electric displacement vector D. Mathematically, these
relationships are expressed through the following constitutive
laws [11]:

T = C:γ − E · e D = e:γ + ε · E. (3)
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Here, C is the fourth-order stiffness tensor, e is the third-order
piezoelectric coupling tensor, and ε is the second-order electric
permittivity tensor.

In the e1–e3 plane, the constitutive laws can be expressed
in the following indicial form:

T11 = C11γ11 + C13γ33 − e31 E3 (4)

T33 = C13γ11 + C33γ33 − e33 E3 (5)

T13 = 2C44γ13 − e15 E1 (6)

D1 = 2e15γ13 + ε11 E1 (7)

D3 = e31γ11 + e31γ33 + ε33 E3. (8)

For ZnO, C11 = 210 GPa, C13 = 105 GPa, C33 = 210 GPa,
C44 = 42.5 GPa, e31 = −0.61 C m−2, e33 = 1.14 C m−2,
e15 = −0.59 C m−2, and ε11 = ε33 = 7.38×10−11 F m−1 [11].

Of particular interest is the change in electric potential
� = �(x1, x3) along the length of the ribbon. The x1-
component of the electric field is defined as E1 = −∂�/∂x1

and so the potential difference across the two ends of the ribbon
is approximately �� = −E1L.

2.3. Balance laws

Lateral deformation is controlled by a shear force V e3 and
bending moment M exerted on the tip of each ribbon. The
externally applied shear force must be balanced by the internal
shear stress T13, which has an average value of τ0 = V/wH .

In the absence of surface and space charge, the electric
displacements D1 vanishes, i.e. D1 = 0. Therefore, the
constitutive equations (6) and (7) imply

τ0 = −
{

e15 + ε11C44

e15

}
E1. (9)

Noting that τ0 = V/wH and E1 = −��/L, it follows that
the difference in electric potential across the two ends of the
sheared ribbon is approximately

�� = V L

wH

{
e15 + ε11C44

e15

}−1

. (10)

2.4. Computational validation

In figure 2(a), the algebraic estimate for �� is compared
with the results of a finite element simulation. Referring
to figure 2(b), a three-dimensional finite element analysis is
performed on a five-layer ≈15 400 element mesh in COMSOL
Multiphysics 3.4 (COMSOL AB, 2007). One end of the ribbon
is kinematically constrained and electrically ground while the
opposite end is subject to a shear force V uniformly distributed
by a shear traction V/wH over the surface.

The non-uniform shear stress distribution leads to a non-
uniform electric potential field along the width and thickness.
Nonetheless, the total drop in potential �� across the two ends
of the ribbon is consistent with the theoretical approximation
based on the average shear stress τ0 = V/wH . Moreover, the
plane stain assumption of restricting deformation to e1–e3 also
appears to be valid.

Figure 2. Comparison of algebraic solution (solid line) and finite
element simulation (open circles) for the drop in electric potential
�� across the length of the ribbon as a function of applied shear
force V . (a) Top curve: L = 1 μm, H = 10 nm, w = 100 nm;
middle curve: L = 10 μm, H = 100 nm, w = 1 μm; bottom
curve: L = 1 μm, H = 100 nm, w = 0.5 μm. (b) Finite element
mesh and electric potential field of a ribbon (L = 10 μm,
H = 100 nm, w = 1 μm) subject to a 5 nN shear load. The ribbon is
electrically ground at the fixed end.

3. Sliding friction

The mechanical work performed on the ribbon during sliding
has the form

W = 2L3V 2

YwH 3
, (11)

where Y = C11−C2
13/C33 is Young’s modulus for plane stress.

In contrast, the total electrostatic energy stored in the crystal is

U = ε11wH��2

2L
= ε11LV 2

2wH

{
e15 + ε11C44

e15

}−2

. (12)

The conversion ratio is defined as χ = U/W and indicates
the proportion of mechanical energy or power that can be
converted into electricity:

χ = ε11Y H 2

4L2

{
e15 + ε11C44

e15

}−2

. (13)

Interestingly, the conversion ratio is invariant to the magnitude
of the shear force and is instead inversely proportional to
the aspect ratio squared. This suggests that the efficiency of
conversion from mechanical power input to electrical power
output does not scale with length but instead scales with the
aspect ratio and is greatest for low aspect ratio ribbons.

3
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Inserting the piezoelectric constants for ZnO into
equation (13), the conversion ratio becomes

χ = 0.083

(
H

L

)2

. (14)

Hence, even for low aspect ratio ribbons with H = 0.1L, the
conversion ratio will only be less than a tenth of a per cent.

In addition to the modest conversion ratio, power output
is limited by the maximum shear force V that can be exerted
on the individual tips. In general, V will be limited by the
fracture strength of the ribbon as well as the shear strength of
the sliding interface. These constraints are discussed in greater
detail in appendix A. In the case of friction-limited shear, the
maximum electrostatic energy that can be stored in a ribbon is
approximately

U0 = 0.021μ
ε11Y 2wH 5

L3

{
e15 + ε11C44

e15

}−2

, (15)

where μ is the coefficient of friction between the ZnO tip
and contacting substrate. For typical values of μ = 0.3,
H = 10 nm, w = 100 nm, L = 1 μm, this corresponds to
U0 = 3.3 × 10−21 J. Hence, for a 1 mm2 array of ribbons
spaced ξ = 100 nm apart and dragged at a rate of 1 m s−1, the
total power output is 0.33 nW.

4. Mechanical vibration

In the case of mechanical vibration, the tip of the ribbon is
permanently bonded to an electrode. Therefore, in addition
to inducing a shear force V , mechanical excitation will also
induce a bending moment that prevents the tip from rotating.

Just as with frictional loading, shear-mode piezoelectric
coupling will convert the vibration-induced lateral deforma-
tions into electricity. As each individual ribbon vibrates back
and forth with a frequency ω, the electrical current alternates
in direction. This produces AC power that can then be rectified
to charge a battery or power a host system.

As with other vibrational piezoelectric energy harvesting
devices, the AC power output P is greatest when the ribbons
are excited at their natural resonant frequency ωn. In
general [12],

P ≈ P0

{
1 +

(
ω − ωn

ζωn

)2
}−1

. (16)

Here, P0 is the AC power output at resonance and ζ is
the damping ratio. This formula suggests that a larger
damping ratio ζ allows energy harvesting over a broad range
of excitation frequencies.

Ignoring the mass of the ribbon itself, the natural
frequency ωn of an individual ribbon has the form ωn =√

km/m. Here

km = YwH 3

L3
(17)

is the lateral stiffness, m = ρξ 2
 is the portion of the mass
of the bonded electrode that is supported by the individual

Figure 3. Equivalent circuit representation of a piezoelectric
cantilever connected to a battery [13].

ribbon, ρ is the electrode density, and 
 is the electrode
thickness. However, depending on the orientation of the
array, mass m may also be limited by the buckling strength
(π2YwH 3/12gL2, where g is gravity) or fracture strength of
the ribbon (m = SUwH/g, where SU is the ultimate tensile
strength and is typically on the order of 1 GPa).

4.1. AC power output

The resonant power output of an individual cantilever is deter-
mined with an equivalent circuit model that addresses both the
static and dynamical effects of elastic deformation, piezoelec-
tric coupling, electricity storage, and energy dissipation [13].
The equivalent circuit representation of the cantilever, elec-
trode, and battery is presented in figure 3.

Definitions for each element and the governing equations
for the complete circuit are presented in appendix B. The
governing equations are used to determine the potential drop
�� during resonance. This corresponds to an AC power
P0 = |��|2/2R, where R is the electrical resistance of the
charging battery or host electronics.

Following the same steps as in [13], the governing
equations (B.2) and (B.3) are used to estimate the power output
at resonance:

4
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P = R(kme15ωn y0)
2{8(ζC44)

2[1 + (RCωn)
2]

+ 8ne15 RωnζC44 + 2(ne15 Rωn)
2}−1. (18)

Here, n = e15wH/L is the equivalent turns ratio, C =
ε11wH/L is the capacitance of the ribbon, ζ = b/2mωn is
the dimensionless damping ratio, and the acceleration y0ω

2
n

corresponds to the Laplacian of the input vibration [13].

4.2. Design criteria

In order for substantial AC power to be harvested, the
nanoribbon array must resonate within the range of anticipated
excitation frequencies. In most buildings, machinery, and civil
infrastructure, ambient vibrations are typically on the order of
1–100 Hz. To be compatible with such a low driving frequency,
each nanoribbon must have a high aspect ratio. However,
as shown in equation (14), the conversion ratio decreases
significantly with increased aspect ratio. Nonetheless, for
a prescribed driving frequency ω0, the condition ωn = ω0

requires the ribbon to have a length

L = H

{
Yw

ω2
0ρξ 2


}1/3

. (19)

Design is also constrained by the maximum allowable
vibrational amplitude u0. As with frictional loading, the
ribbons will break if sheared beyond their fracture strength.
This occurs when u0 = γ0 L2/6H , where γ0 is the ultimate
tensile strength of the crystal. Because the ribbons are virtually
inextensible, amplitude is also limited by the natural length
of the ribbon. For moderate lateral displacements where
the center of the ribbon rotates by 30◦, this corresponds to
approximately u0 = (4L/π)(1 − √

3/2).
Driving the base of the cantilever by a displacement y =

y0 sin(ω0t) will cause the system to asymptotically reach a
maximum tip displacement on the order of y0/2ζ0. Therefore,
the vibration amplitude must be less than the critical value
2ζ0u0. Assuming that the ribbons are sufficiently thin to avoid
brittle fracture in bending, y0 is bounded above by

y0 = 8ζ0L

π

(
1 −

√
3

2

)
. (20)

Substituting in the expressions for L and y0 and solving
dP/dR = 0 implies that P is at an extreme value when R
equals

R∗ = 2C44ζ0√
(2ζ0C44ε11)2 + e4

15

(
Y

ω5
0ρξ 2
w2

)1/3

. (21)

Substituting this into P yields an expression for the AC power
generation of each cantilever. Multiplying by (
/ξ)2 gives the
total power output of the array:

P = 2(2 − √
3)2e2

15 H 2ρ
3ω3
0Y ζ0

π2C44

(√
(2ζ0C44ε11)2 + e4

15 + e2
15

) . (22)

From equation (22) it is apparent that the total power output
increases with increasing thickness H , resonant frequency ω0,

device dimension 
, and damping ratio ζ0. The increasing
power output with increasing damping ratio is counter-intuitive
and comes from the condition that greater ζ0 allows for a
greater vibrational amplitude y0.

4.3. Example

Suppose that the nanoribbon array is supporting a gold
electrode (ρ = 20 × 103 kg m−3). Moreover, assume
that the complete system occupies a volume 
3 with 
 =
1 mm, comparable to the size of existing MEMS-based energy
harvesting systems. The total power output P is calculated for
a prescribed resonant frequency ω0 = 10 kHz and damping
ratio ζ0 = 1, which implies that the system is critically
damped. For a ribbon of thickness H = 0.1 μm it follows
from equation (22) that the total AC power output will be
P = 0.6 nanowatts (nW). Furthermore, if we prescribe a
width w = 5H = 0.5 μm and spacing ξ = 10H = 1 μm,
then it follows that the ribbon should have a length L = 33 μm
and vibrate with an amplitude y0 = 11 μm at the base.

Another important design parameter is the required battery
resistance R∗. According to equation (21), R∗ = 9 ×
1014 �, which will result in an internal electric field of E1 =
30 MV m−1. This is of the order of the dielectric strength of
a semiconductor and suggests that electric breakdown could
occur. Setting R = 1013 � decreases E1 to 0.5 MV m−1, well
below the threshold for electric breakdown, but causes P to
reduce to 12 picowatts (pW).

5. Discussion

ZnO nanostructures have received considerable attention and
publicity for their potential role in energy harvesting. In
contrast to MEMS-based systems, ZnO nanostructures allow
piezoelectric energy harvesting at the nanometer scale and thus
provide a unique opportunity for self-powered nanoelectronics
and NEMS. Moreover, because of their simple, single crystal
structure, these NPEH systems can be produced with existing
fabrication techniques [3, 5–7].

Elastic rod theory and piezoelectric modeling are used
to evaluate the ability of an array of vertically aligned ZnO
nanoribbons to convert elastic deformation into electrical
power. Deformation is induced by sliding friction or
mechanical vibration and generates electricity through shear-
mode piezoelectric coupling.

The theory suggests that an array of vertically aligned
ZnO nanoribbons can produce as much as 1 nW mm−2 and
1–100 nW mm−3 electricity. While adequate to run a low
power device such as a 30 pW processor [14], these estimates
are significantly less than the power density of MEMS-based
systems of comparable size (0.1–1 μW mm−3 [4, 15]). In
addition to the relatively low power output, the theory also
predicts a low ratio for the conversion of mechanical power
input to electricity output.

6. Concluding remarks

Progress in nanoscale piezoelectric energy harvesting (NPEH)
will require design innovations that improve the power output

5
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density and power conversion ratio. Theoretical estimates for
vertically aligned ZnO nanoribbons suggest only modest power
generation. This is due to the small size scale, high aspect ratio,
and dependency on shear-mode (e15) piezoelectric coupling.
Future efforts in NPEH should explore alternative geometries
and methods that, for example, exploit elongational (e31 and
e33) coupling.
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Appendix A. Shear strength of a nanoribbon array

When the array is dragged across a smooth surface, the
tips of the ribbons are loaded with a shear force V . As
demonstrated in equation (10), greater shear load results in a
greater difference in electric potential. However, the magnitude
of the shear force will be limited by the shear strength of the
sliding interface as well as the fracture strength of the ribbon.

The interfacial shear strength is expected to be controlled
by a combination of friction and adhesion. Friction will be
limited by the coefficient of friction μ and the maximum axial
load F0 that can be exerted on the ribbon prior to buckling.
This corresponds to an interfacial force of

Vf = μF0 = μ
π2YwH 3

48L2
. (A.1)

For typical values of μ = 0.3, H = 10 nm, w = 100 nm,
L = 1 μm, the critical shear strength is estimated to be
Vf = 1.2 nN. This value may be further enhanced by adhesion,
which may arise from electrostatic, capillary, or van der Waals
interactions.

The mechanisms for brittle fracture are quite complex,
and so it is difficult to establish a reliable estimate for the
true fracture strength of the ribbon. Nonetheless, conventional
elastic rod theory does furnish an upper bound on the fracture
strength that will be useful at this stage of design. It suggests
that fracture will begin when increasing shear load causes the
induced strain to reach the ultimate tensile strain γt of the
crystal. The induced strain is greatest inside the fixed base of
the ribbon, where the shear force exerts a bending moment V L
on the cross section. At the tensile edge of the cross section,
the strain is approximately γ11 = 6V L/YwH 2. This implies
that failure occurs when V reaches the critical value

V0 = YwH 2γt

6L
. (A.2)

For crystalline material like ZnO, γt is expected to be less than
0.01. Again assuming H = 10 nm, w = 100 nm, L = 1 μm,
it follows that V0 = 35 nN. Although this is greater than Vf,
it is possible for V0 to be the smaller of the two upper bounds
when the aspect ratio L/H is smaller.

Appendix B. Equivalent circuit model

In the equivalent circuit model, the inductance L corresponds
to the mass m, the resistance R replaces the mechanical
damping coefficient b, and the capacitance C equals the
inverse of the mechanical stiffness km of the cantilever. The
parameter n represents the ratio of the number of turns in the
equivalent transformer between the mechanical and electrical
portions of the system and is associated with the piezoelectric
coupling between the shear load V and voltage drop ��.
Lastly, C and R represent the capacitance and resistance of
the cantilever and battery, respectively.

By linear superposition, a prescribed lateral tip displace-
ment u and potential drop �� will induce the following shear
force:

V = kmu + n��, (B.1)

where km = YwH 3/L3 is the lateral stiffness and n =
e15wH/L is the turns ratio. The electrical current is i =
wH Ḋ, where D is the electric displacement along the e1

direction when the internal electric field is zero [13]. In this
case, the average shear stress is T13 = kmu/wH and so
from the constitutive equations, D = e15kmu/C44wH , which
implies i = (e15km/C44)u̇ (the dot denotes the time derivative).

The base of the cantilever array is subject to a lateral
displacement y = y(t), which is a function of time t . In the
case of uniform, periodic vibrations, y(t) has the form y =
y0 sin(ωt), where y0 and ω are the amplitude and frequency of
the vibrational motion. Vibrating the base induces a relative tip
displacement u = u(t) and an absolute tip displacement y +u.
Performing a linear force balance on the supported mass yields
−V = m(ÿ + ü). Adding damping and substituting in the
equivalent circuit terms for the mechanical parameters yields
the governing equation for an equivalent transformer:

my0ω
2
0 sin(ω0t) = L ü + Ru̇ + 1

C
u + n�� (B.2)

and

i = C��̇ + 1

R
��. (B.3)
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