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A simplified formulation of adhesion problems
with elastic plates

BY CARMEL MAJIDI
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The solution of adhesion problems with elastic plates generally involves solving a
boundary-value problem with an assumed contact area. The contact region is then found
by minimizing the total potential energy with respect to the contact area (i.e. the contact
radius for the axisymmetric case). Such a procedure can be extremely long and tedious.
Here, we show that the inclusion of adhesion is equivalent to specifying a discontinuous
internal bending moment at the contact region boundary. The magnitude of this
moment discontinuity is related to the work of adhesion and flexural rigidity of the plate.
Such a formulation can greatly reduce the algebraic complexity of solving these
problems. It is noted that the related plate contact problems without adhesion can also
be solved by minimizing the total potential energy. However, it has long been recognized
that it is mathematically more efficient to find the contact area by specifying a
continuous internal bending moment at the boundary of the contact region. Thus, our
moment discontinuity method can be considered to be a generalization of that procedure
which is applicable for problems with adhesion.

Keywords: adhesion; contact mechanics; plate; thin-film
*A
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Acc
1. Introduction

Problems involving adhesion of elastic plates are important in a variety of
applications. An important process in the semiconductor industry is wafer
bonding. Wafers are typically bonded together by applying a load at the centre
which causes the bond front to spontaneously propagate radially outward to the
wafer edge (Turner & Spearing 2002), i.e. to zip shut. This process is driven by
the combination of applied pressure and the surface interactions due to weak
interatomic forces, such as van der Waals forces. A permanent bond is created by
the formation of covalent bonds which normally occurs at a high temperature.
Turner & Spearing (2002) modelled this process using elastic plate theory and
minimizing the total potential energy with respect to the bond radius.
An experimental investigation (Turner & Spearing 2005) verified the results of
their earlier paper.
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Nanomanufacturing is a relatively new fieldwhich is of great current interest. One
potential method of nanomanufacturing uses self-assembly of nanoelements on a
template followed by the transfer of these elements from the template to the device
wafer (Pamp &Adams 2007). However, wafers typically have waviness or bow that
can lead to surface deviations of many micrometres. Thus, an outside force, or
pressure, is required to bring these surfaces into intimate contact to accomplish the
transfer of the nanoelements. This process is similar to that used in wafer bonding.
However, unlike with semiconductors, it is very important to avoid bonding of the
wafers. Thus, the elastic energy stored during the deformation must be sufficient to
separate the surfaces after the pressure is removed. Both cylindrical bending and
axisymmetric deformation were considered by Pamp & Adams (2007).
The axisymmetric problem was solved by minimizing the total potential energy.
That procedure was extremely lengthy and required the use of a symbolic
interpreter language to perform the algebra. In the analysis of cylindrical bending, it
was shown that for the particular cases studied, the effect of adhesion is equivalent to
a discontinuity in the internal bending moment at the contact boundary.

There is also considerable interest in bio-inspired adhesives, in particular in the
peeling or attachment of plate-like spatulae or lamellae of wall-climbing insects and
lizards. These latter structures are treated as a thin elastic plate in contact with a
rigid, non-flat substrate (Persson & Gorb 2003; Majidi & Fearing 2008). In biology,
cell adhesion is also an active area of study and has been addressed by various plate
theories and adhesion models (Seifert 1991; Rosso et al. 2000; Wan & Liu 2001).

In general, the method used to solve adhesion problems with elastic plates
involves solving a boundary-value problem with an assumed contact area. The
actual contact region is then found by minimizing the total potential energy
(which includes the work of adhesion) with respect to the contact area (i.e. the
contact radius for an axisymmetric problem). This procedure can be extremely
cumbersome and tedious. In this paper, we show that the inclusion of adhesion is
equivalent to specifying a discontinuous internal bending moment at the contact
region boundary. The magnitude of this moment discontinuity is shown to be
equal to the square root of twice the product of the work of adhesion and the
plate flexural rigidity. Such a formulation can lead to an enormous reduction in
the algebraic complexity of solving adhesion problems with elastic plates.

It is noted that related contact problems without adhesion can also be solved
by minimizing the total potential energy (which in this case does not include the
work of adhesion). However it has long been recognized that it is mathematically
more efficient to find the contact area by specifying a continuous internal
bending moment at the boundary of the contact region (Timoshenko &
Woinowsky-Kreiger 1959, pp. 308–313; Benson 1991). Thus, our moment
discontinuity method (MDM) constitutes a generalization of that procedure
which is applicable for contact problems with adhesion. The use of the method is
illustrated with some example problems.
2. Model

Suppose that an elastic, thin-walled, axisymmetric body (e.g. hollow sphere, a
bowl or a circular disk) makes point contact with a rigid, axisymmetric surface
and that the axis of symmetry for the two bodies coincide. As illustrated in
Proc. R. Soc. A (2009)
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Figure 1. An initially curved plate adhering to a rigid surface under the action of line forces and
moments. (a) Natural configuration; and (b) equilibrium configuration.
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figure 1a, point contact is only possible if the local curvature of the plate is more
positive than that of the surface.

Interfacial adhesion and externally applied loads cause the contact to grow
from a point to a circle of radius a, as shown in figure 1b. External loads can be
applied as surface tractions (not shown in the figure) or line forces and moments
at the edge of the plate. Moreover, the edge of the plate may be subject to
kinematic constraints that prevent displacement and/or rotation. As with the
geometry, the external loads and constraints are axisymmetric.

(a ) Kinematics

Let the coordinate s2[0,L] denote the radial arclength of a point on the
midplane, where L is the radial arclength of the plate. Next, define the rotation
angle qZq(s) of the undeformed midplane with respect to horizontal, as
illustrated in figure 1a. At equilibrium, the rotation angle becomes qCf, where
fZf(s) is the change in angle induced by adhesion and external loads. At
equilibrium, points may have also displaced tangentially by an amount usZus(s).
These deformations lead to elastic strains that also depend on the change in
curvature f0Zdf/ds and tangential stretch u 0

sZdus=ds.
Let xZx(s) denote the radius of the plate at s. As shown in figure 1b, the radius

becomes xCux at equilibrium. Both x(s) and ux(s) are evaluated by integrating
over the interval [0,s]:

x Z

ðs
0
cos q dŝ and ux Z

ðs
0
cosðqCfÞ 1Cu 0

s

� �
dŝKx: ð2:1Þ

Similarly, yZy(s) and uy(s) denote the initial height and vertical displacement of
a point at s,

y Z

ðs
0
sin q dŝ and uy Z

ðs
0
sinðqCfÞ 1Cu 0

s

� �
dŝKy: ð2:2Þ

Because the undeformed plate is axisymmetric, it will not only have a curvature
q0Cf0 in the radial direction, but also a curvature k in the hoop direction.
At equilibrium, the curvature becomes kCz. From geometry it follows that

kZ
sin q

x
and zZ

sinðqCfÞ
xCux

Kk: ð2:3Þ
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At equilibrium, the plate contacts the substrate over the interval [0,a], where the
radial arclength a of the contact zone is less than or equal to L. Although f and u are
continuous over the entire domain [0,L], their derivatives f0 and u 0

s will generally
have a jump at sZa. Hence, it is convenient to define

fa Z ff : s2 ½0; a�g fb Z ff : s2 ½a;L�g;
ua Z fus : s2 ½0; a�g ub Z fus : s2 ½a;L�g:

ð2:4Þ

(b ) Boundary conditions

Both q and the surface profile of the substrate are prescribed and so it is
straightforward to determine the angle change fa required for contact. If the
interface is non-slip, then ua may also be prescribed (e.g. uaZ0). However,
if the contact is frictionless then ua is unknown and must be solved for.
Regardless, the plate is subject to the following boundary conditions:

faðaÞZfbðaÞ and uaðaÞZ ubðaÞ: ð2:5Þ

There may also be a kinematic constraint at the edge sZL that leads to the
boundary condition

fbðLÞZ 0: ð2:6Þ

Lastly, there could be end constraints of the formðL
0
fsinðqCfÞ 1Cu 0

s

� �
Ksin qg dsZ c1 ð2:7Þ

and ðL
0
fcosðqCfÞð1Cu 0

sÞKcos qgdsZ c2: ð2:8Þ

Equations (2.7) and (2.8) constrain the displacement of the edge of the plate in
the vertical and radial directions respectively.
(c ) Energy functional

The total potential energy of the system P is composed of the elastic strain
energy, the work of the applied forces, the virtual work of the reaction forces
associated with the end contraints (2.7) and (2.8), and the energy of adhesion.
For a von Kármán plate, the elastic energy density per unit area is

jZ
1

2
Dðf0Þ2 CnDf0zC

1

2
Dz2 C

EH

2ð1Kn2Þ u 0
s

� �2
C2nu 0

s

ux
x
C

ux
x

� �2� �
; ð2:9Þ

where DZEH 3/12(1Kn2) is the flexural rigidity; E is the elastic modulus; H is
the plate thickness; and n is Poisson’s ratio. The work of the line forces and
moment at sZL are

2pxðLÞFxuxðLÞ; 2pxðLÞFyuyðLÞ and 2pxðLÞMfðLÞ: ð2:10Þ
Proc. R. Soc. A (2009)
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The virtual work associated with the end constraints are

2pxðLÞlxuxðLÞ and 2pxðLÞlyuyðLÞ; ð2:11Þ

where the Lagrangian multipliers lx and ly represent the reaction forces
necessary to maintain (2.7) and (2.8) (Lanczos 1970). The work of the surface
tractions are obtained by integrating

fð1Cu 0
sÞcosðqCfÞKcos qg

ðL
s
2pxtx dŝ ð2:12Þ

and

fð1Cu 0
sÞsinðqCfÞKsin qg

ðL
s
2pxty dŝ; ð2:13Þ

over the interval [0,L]. Lastly, g denotes the energy of adhesion per unit area
of contact.

The total potential energy is obtained by subtracting the work and adhesion
energy from the elastic energy (Kendall 1971). This yields a functional of
the form

PZ

ða
0
La dsC

ðL
a
Lb ds; ð2:14Þ

where the Lagrangian densities are

La Z 2pxjaK2pxðLÞMf0
aK2pxgK ha; ð2:15Þ

Lb Z 2pxjbK2pxðLÞMf0
bK hb: ð2:16Þ

Here, ha and hb are defined as hðs;fa; ua; u
0
aÞ and hðs;fb; ub; u

0
bÞ, respectively,

where h is the integrand that corresponds to the sum of work of the applied line
forces, reaction forces and surface tractions,

h Z 2pxðLÞð1Cu 0
sÞfðFx ClxÞcosðqCfÞCðFy ClyÞsinðqCfÞg

Cð1Cu 0
sÞcosðqCfÞ

ðL
s
2pxtx dŝCð1Cu 0

sÞsinðqCfÞ
ðL
s
2pxty dŝ: ð2:17Þ

For convenience, the constant terms that do not contain f, f0, u or u0 are
omitted from the energy functional.
3. Analysis and results

At equilibrium, the energy functional P must be stationary with respect to
kinematically admissible variations of the form

fa/faCdfa; fb/fbCdfb; ua/ua Cdua;

ub/ub Cdub and a/aCda:

)
ð3:1Þ

These conditions lead to the differential and boundary forms of the balance laws
for both linear and angular momentum as well as a jump condition at the
interface sZa. The main results are presented in §3a–c.
Proc. R. Soc. A (2009)
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(a ) Moment balance

Infinitesimal variations in fa and fb lead to a variation dPf in the total
potential energy of the system. At equilibrium, dP must vanish for any arbitrary
functions dfa and dfb that satisfy the kinematic boundary, i.e. the variations
must be kinematically admissible. As shown in appendix A, dPZ0 if and only if
the following conditions are satisfied:

vLb

vfb

K
d

ds

vLb

vf0
b

 !
Z 0; ð3:2Þ

vLb

vf0
b

 !
sZL

Z 0 ðif fbðLÞ is not prescribedÞ: ð3:3Þ

Equations (3.2) and (3.3) represent the differential and boundary form of the
moment balance, respectively.

(b ) Force balance

Similarly, infinitesimal variations in ua and ub result in a variation dPu that
vanishes at equilibrium for arbitrary but kinematically admissible functions dua
and dub. This implies (see appendix A)

vLb

vub
K

d

ds

vLb

vu 0
b

 !
Z 0; ð3:4Þ

vLa

vua
K

d

ds

vLa

vu 0
a

� �
Z 0 ðif uais not prescribedÞ; ð3:5Þ

vLa

vu 0
a

� �
sZa

K
vLb

vu 0
b

 !
sZa

Z 0 ðif uaðaÞ is not prescribedÞ; ð3:6Þ

vLb

vu 0
b

 !
sZL

Z 0 ðif ubðLÞ is not prescribedÞ: ð3:7Þ

Equations (3.4), (3.5) and (3.6), (3.7) are equivalent to the differential and
boundary forms of the linear force balance, respectively.

(c ) Adhesive boundary condition

Lastly, varying the arclength a of the adhesive contact zone by an infinitesimal
amount da results in a variation of P that has the form dPaZ(dP/da)da.
At equilibrium, dP/da must equal 0, which results in the following jump
condition at sZa:

0ZLaðaÞKLbðaÞK
vLb

vf0
b

 !
sZa

ff0
aðaÞKf0

bðaÞgK
vLb

vu 0
b

 !
sZa

fu 0
aðaÞKu 0

bðaÞg;

ð3:8Þ
Proc. R. Soc. A (2009)
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where the last term is dropped if ua is not prescribed. Details of the derivation for
(3.8) are presented in appendix B. In brief, the derivation involves Leibniz’s
integration rule and makes use of the boundary conditions and balance laws.

The adhesive boundary condition (3.8), which is derived using the calculus of
variations, represents a special case of the second Weierstrass–Erdmann Corner
Condition or the variable endpoint (free horizon) problem (Seifert 1991;
Troutman 1996). In general, it can also regarded as an Eshelbian energy
momentum balance or material (configurational) force balance at the edge (sZa)
of the adhesive zone. In this respect, it may be possible to derive the adhesive
boundary condition (3.8) using the J-integral method or configurational
mechanics (Majidi 2007). In §4, we show that for a frictionless contact (such
that ua is not prescribed), the adhesive boundary condition can also be regarded
as a discontinuity in the internal bending moment.
4. Moment discontinuity method

Suppose that the interface between the plate and substrate is frictionless. Since
ua is not prescribed, the last term in (3.8) must be dropped. Substituting the
expressions for La and Lb into (3.8) and noting that x, u, u0 and f are continuous
through sZa, the adhesive boundary condition becomes

KgCjaðaÞKjbðaÞK
vjb

vf0
b

 !
sZa

f0
aðaÞKf0

bðaÞ
	 


Z 0: ð4:1Þ

Using the expression of j in (2.9), it follows that f0
aðaÞKf0

bðaÞZG
ffiffiffiffiffiffiffiffiffiffiffiffi
2g=D

p
.

The curvature may be represented in terms of the internal moment

M Z vj=vf0 ZDf0CnDz; ð4:2Þ
which implies MaKMbZG

ffiffiffiffiffiffiffiffiffi
2Dg

p
. According to the MDM, the right-hand side

may be treated as an adhesion-induced singular moment K
ffiffiffiffiffiffiffiffiffi
2Dg

p
that is applied

at sZa. The negative sign is chosen because the effect of adhesion is to produce
an applied moment in the negative q direction (figure 1a). If the rigid surface
were on the top of the plate then the sign of this adhesion-induced moment would
be positive. The jump condition can be expressed as

Mb ZMa CMo forMo Z
ffiffiffiffiffiffiffiffiffi
2Dg

p
; ð4:3Þ

where Mo is the discontinuity in the internal bending moment. Again if the rigid
surface was above the plate then the sign of Mo would be reversed. An extension
of this MDM into two plates can be found in Majidi & Wan (2009) in which the
square root of the sum of the squares of the discontinuities in bending moments is
equal to Mo.
5. Examples

By replacing adhesion with a line momentMo at the contact boundary, the MDM
allows plate adhesion problems to be studied entirely within the framework of
classical plate theories. This is in contrast to the energy approach used in §3, the
Proc. R. Soc. A (2009)
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Figure 2. (a) Adhesion of a rectangular plate of length 2L to a rigid cylinder of radius R;
(b) adhesion of a circular plate of radius L to a rigid sphere of radius R. (c) Both plates are subject
to a line force FyZKP along their edge.
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J-integral method, or the material (configurational) force balance, which all
require insights and analyses that are outside the scope of Newtonian balance
laws or moment-curvature constitutive models. For many one-dimensional
and axisymmetric adhesion problems, MDM greatly simplifies the analysis and
reduces derivation of the contact length a to only a few lines of algebra. This is
demonstrated in the following examples.

(a ) Adhesion to a cylinder

As illustrated in figure 2, a rectangular plate of length 2L is pressed onto a
cylinder of radius R by a vertical line force FyZKP applied at its two ends.
Both the adhesion and applied loads lead to a contact zone of length 2a%2L
between the plate and cylinder. By symmetry only half of this configuration
is analysed. At the edge of the contact zone, the plate has internal
moments MaZKD/R and MbZKP(LKa) just inside and outside of the
zone, respectively. These internal moments must balance the singular moment
MoZ

ffiffiffiffiffiffiffiffiffi
2Dg

p
induced at the edge:

Mb ZMa CMo 0 a ZLK
D

PR
C

1

P

ffiffiffiffiffiffiffiffiffi
2Dg

p
: ð5:1Þ

It is noted that MDM was developed for an axisymmetric geometry. However, it
is straightforward to show that this method also works for cylindrical bending.
In the absence of a load P, the plate will either adhere completely (aZL) or not
at all (aZ0) depending on whether the magnitude of Ma is less than or greater
than Mo. It is straightforward, though significantly more tedious, to obtain a
using an energy minimization argument.

(b ) Adhesion to a sphere

Now suppose that a circular plate of radius L is pressed into a sphere of radius
R. Referring to figure 2, the edge of the plate is subject to a vertical line force
FyZKP. According to MDM, the radius a%L of the contact zone must satisfy
the moment balance MbZMaCMo. The internal moment inside but near the
edge of the contact zone is MaZK(1Cn)D/R while the internal moment just
outside of the contact zone is MbZDff0

bðaÞCnzg.
Proc. R. Soc. A (2009)
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The end force P results in a line shear load Q(s)ZPL/s. Therefore, from eqn
(54) in Timoshenko & Woinowsky-Kreiger (1959, p. 53) and the boundary
conditions (2.5)1 and (3.3), it follows that fbZfb(s) is the solution to

f00
b ZK

f0
b

s
C

fb

s2
C

PL

Ds
; fbðaÞZKa=R and f0

bðLÞCn
fbðLÞ
L

Z 0: ð5:2Þ
Alternatively, (5.2) may be derived by substituting the Lagrangian density

obtained from §2c into the moment balance (3.2). Noting that the plate is
initially flat (qZ0), it follows from (2.1) and (2.3) that xZs, uxz0 and zzfb/s.
Ignoring elastic stretching (u and u0)

Lb ZpsDðf0
bÞ2C2pnDf0

bfbCpsD
fb

s

� �2

C2pLPfb: ð5:3Þ

An algebraic solution is obtained in MAPLE 12 and is used to evaluate
MbZDff0

bðaÞCnfbðaÞ=ag. Substituting this into the moment balance
MbZMaCMo:

K
nD

R
C

ðL2Ka2Þð2DKPRLÞC4nDLaC2PRL3 lnða=LÞ
2RðL2 Ca2Þ hKð1CnÞD

R
C

ffiffiffiffiffiffiffiffiffi
2Dg

p
:

ð5:4Þ
The contact radius at equilibrium is determined by solving the above equation
for a.

The adhesion of a circular plate to a sphere was previously studied
by Majidi & Fearing (2008). In their analysis, a bound on a was obtained by
ignoring strain energy in the non-contacting portion (i.e. jbZ0) and performing
an energy minimization. Their equilibrium condition (2.8) is equivalent to the
condition gZja(a) that results from (4.1) for jbZ0. Equation (5.4) represents a
significant improvement on this result, since it allows for an applied force P and
furnishes an explicit value for a at equilibrium rather than a bound.

(c ) Adhesion under a uniform surface traction

Finally, consider the adhesion of a circular plate of radius L to a rigid flat surface
under a uniform surface traction tyZKt. As illustrated in figure 3, the plate is
initially concave up with a slight spherical bow. The initial angle of rotation along
the arclength is thus qZs/R, whereR is the natural radius of curvature. ForR[L
and assuming that the deflections are small compared to the thickness, the small-
angle theoremmay be employed and effects of the induced u0 can be neglected.Here,
the line shear load is Q(s)ZL2/2sKs/2 and so from eqn (54) in Timoshenko &
Woinowsky-Kreiger (1959, p. 53), it follows that:1

f00
b C

f0
b

s
K

fb

s2
Z

t

2D

L2

s
Ks

� �
; ð5:5Þ

which is subject to theboundaryconditionsfb(a)ZKa/R,Mb(a)ZKD(1Cn)/RCMo

andMb(L)Z0. The solution of (5.5) subject to these boundary conditions gives

16ð1CnÞC
Kð1KnÞða=LÞ4K4nða=LÞ2

C1C3nC4ð1CnÞlnða=LÞ

( )
tRL2

D
Z 8

ffiffiffiffiffiffiffiffiffiffiffi
2gL2

D

r
; ð5:6Þ
1 Equation (5.5) can also be obtained from the arguments in §2c. As in the previous example, we
may approximate xZs, uxZ0 and zZfb/s.

Proc. R. Soc. A (2009)
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Figure 3. Adhesion of a spherically bowed circular plate of radius L to a flat rigid substrate and
subject to a uniform surface traction t.
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which relates the contact radius (a); the applied pressure (t); andwork of adhesion (g).
This result is far simpler than that obtained by Pamp & Adams (2007), but gives the
same numerical results.
6. Conclusion

In this paper, we have shown that the inclusion of adhesion, in a contact problem
with an elastic plate, is equivalent to specifying a discontinuous internal bending
moment at the contact region boundary. The magnitude of this moment
discontinuity is equal to the square root of twice the product of the work of
adhesion and the flexural rigidity of the plate. This formulation greatly reduces
the algebraic complexity of solving adhesion problems with plates. Our moment
discontinuity method can be considered a generalization of the well-known use of
a continuous bending moment to solve plate contact problems without adhesion.
The method has been implemented on some sample problems.
Appendix A. Derivation of moment and force balance

The first two variations in (3.1) lead to the following variation in the total
potential energy of the system:

dPf Z

ða
0

vLa

vfa

dfa C
vLa

vf0
a

df0
a

� �
dsC

ðL
a

vLb

vfb

dfb C
vLb

vf0
b

df0
b

( )
ds: ðA 1Þ

By the chain rule (Lanczos 1970),

ða
0

vLa

vf0
a

df0
a dsZ

ða
0

d

ds

vLa

vf0
a

dfa

� �
K

d

ds

vLa

vf0
a

� �
dfa

� �
ds

Z
vLa

vf0
a

dfa

� a
0

K

ða
0

d

ds

vLa

vf0
a

� �
dfa ds: ðA 2Þ
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Following the same argument for the other integral in (A 1), leads to the result:

dPf Z
vLa

vf0
a

dfa

� a
0

C

ða
0

vLa

vfa

K
d

ds

vLa

vf0
a

� �� �
dfa dsC

vLb

vf0
b

dfb

" #L
a

C

ðL
a

vLb

vfb

K
d

ds

vLb

vf0
b

 !( )
dfb ds: ðA 3Þ

According to the boundary condition that fa is prescribed, dfa must equal 0 for
all s2[0,a]. Moreover, dfb(a)Z0 since fb(a) is constrained to be equal to the
fixed value fa(a). Also, if fb is prescribed at sZL then dfb(L)Z0 as well. For s
between a and L, dfb is arbitrary and so dP vanishes only if

vLb

vfb

K
d

ds

vLb

vf0
b

 !
Z 0: ðA 4Þ

If fb(L) is not prescribed then dfb(L) is also arbitrary and so the condition dPZ
0 also requires ðvLb=vf

0
bÞsZLZ0.

Using a similar argument, it can be shown that variations of the third and
fourth terms in (3.1) yield

dPu Z
vLa

vu 0
a

dua

� a
0

C

ða
0

vLa

vua
K

d

ds

vLa

vu 0
a

� �� �
dua dsC

vLb

vu 0
b

dub

" #L
a

C

ðL
a

vLb

vub
K

d

ds

vLb

vu 0
b

 !( )
dub ds: ðA 5Þ

The condition dPuZ0 requires that

vLb

vub
K

d

ds

vLb

vu 0
b

 !
: ðA 6Þ

Also, if ua is not prescribed then dPuZ0 only holds if

vLa

vua
K

d

ds

vLa

vu 0
a

� �
; ðA 7Þ

and ðvLa=vu
0
aÞsZaZðvLb=vu

0
bÞsZa. Also, if ub(L) is not prescribed, then

equilibrium requires ðvLb=vu
0
bÞsZLZ0.
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Appendix B. Derivation of adhesive boundary condition

The variation of the fifth term in (3.1) corresponds to

dPa Z
dPa

da
da ZLaðaÞdaC

ða
0

vLa

va
C

vLa

vfa

dfa

da
C

dLa

df0
a

df0
a

da

C
vLa

vua

dua
da

C
dLa

du 0
a

du 0
a

da

8>>>><
>>>>:

9>>>>=
>>>>;
da ds

KLbðaÞdaC
ðL
a

vLb

va
C

vLb

vfb

dfb

da
C

dLb

df0
b

df0
b

da

C
vLb

vub

dub
da

C
dLb

du 0
b

du 0
b

da

8>>>><
>>>>:

9>>>>=
>>>>;
da ds

Z 0: ðB 1Þ

By the balance law (3.2) and the chain rule,ðL
a

vLb

vfb

dfb

da
C

dLb

df0
b

df0
b

da

( )
dsZ

ðL
a

d

ds

vLb

vf0
b

 !
dfb

da
C

dLb

df0
b

df0
b

da

( )
ds

Z

ðL
a

d

ds

vLb

vf0
b

dfb

da

 !
ds

Z
vLb

vf0
b

dfb

da

 !
sZL

K
vLb

vf0
b

dfb

da

 !
sZa

: ðB 2Þ

The variation dPa is simplified by following the same argument for the other
integrals and noting that dfa/daZ0 and (dua/da)sZ0Z0. Also, if ub(L) and
fb(L) are prescribed then dub/daZdfb/daZ0 at sZL. Otherwise, it follows
from (3.3) and (3.7) that vLb=vu

0
bZvLb=vf

0
bZ0. In either case,

vLb

vu 0
b

dub
da

 !
sZL

Z
vLb

vf0
b

dfb

da

 !
sZL

Z 0: ðB 3Þ

Hence,

dPa

da
ZLaðaÞKLbðaÞK

vLb

vf0
b

dfb

da

 !
sZa

K
vLb

vu 0
b

dub
da

 !
sZa

C
vLa

vu 0
a

dua
da

� �
sZa

:

ðB 4Þ
If ua is not prescribed, then uZu(s) is smooth at sZa since both ua and ub are
solutions to the same balance equations and subject to the boundary conditions
ua(a)Zub(a) and (3.6). Hence ðdua=daÞsZaZðdub=daÞsZa and so in light of (3.6)
this implies that the last two terms of (B 4) cancel each other out. However, if ua

is prescribed then ðdua=daÞsZaZ0 and the second to last term will remain.
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In order to determine dfb/da and dub/da at sZa, consider a variation of the
form aZa�Cda, where a� is the arclength of the contact zone at equilibrium and
da represents an infinitesimal variation from a� (Seifert 1991). This results in
variations of the form fbZf�

bCdfb and ubZu�
bCdub. According to the

boundary conditions (and noting that the variations must be kinematically
admissible), f�

bða�ÞZfaða�Þ, fb(a)Zfa(a), u�
bða�ÞZuaða�Þ and ub(a)Zua(a),

where both fa and ua are prescribed. Moreover, according to the fundamental
theorem of calculus, for any function cZc(s), cðaÞZcða�ÞCdac0ða�ÞCOðda2Þ.
Therefore,

fbðaÞZfbða�ÞCdaf0
bðaÞZf�

bða�ÞCdfbðaÞCdaf0
bðaÞ; ðB 5Þ

which, according to the boundary condition fb(a)Zfa(a), is equivalent to

faðaÞZfaða�ÞCdaf0
aðaÞ: ðB 6Þ

Noting that faða�ÞZf�
bða�Þ and solving for dfbðaÞ=dahðdfb=daÞsZa implies

that ðdfb=daÞsZaZf0
aðaÞKf0

bðaÞ. Similarly, ðdub=daÞsZaZu 0
aðaÞKu 0

bðaÞ. Hence,
the condition dPaZ0 implies

0ZLaðaÞKLbðaÞK
vLb

vf0
b

 !
sZa

f0
aðaÞKf0

bðaÞ
	 


K
vLb

vu 0
b

 !
sZa

u 0
aðaÞKu 0

bðaÞ
	 


:

ðB 7Þ

If ua is not prescribed then the last term must be dropped.
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