
Adhesion of an elastic plate to a sphere
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Stationary principles and the von Kármán plate theory are used to study the adhesion of
thin elastic plates to a rigid sphere. Contact requires both flexural and membrane strains
that can lead to partial or complete delamination. Interestingly, whereas a large area
plate might spontaneously delaminate from the sphere, dividing this plate into many
smaller plates with equivalent thickness eliminates membrane strains and may allow
complete contact. The theoretical predictions are compared to experimental results for
low density polyethylene on a smooth glass sphere. The peel strength is estimated with a
modified Kendall peel equation.
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1. Introduction

Theoretical models for plate or membrane delamination are widely used in
adhesion and thin film sciences. Recently, these models have been extended to
study silicon wafer bonding (Turner & Spearing 2002; Pamp & Adams 2007) and
biological and bio-inspired adhesives, in particular the peeling or attachment
of plate-like spatulae or lamellae in wall-climbing insects and lizards. These latter
structures are treated as a thin elastic plate in contact with a rigid, randomly
rough substrate (Persson & Gorb 2003; Carbone et al. 2004; Filippov &
Popov 2007).

Previous analyses of biological and bio-inspired adhesives are limited to two
dimensions, and so issues related to contact with non-developable surface
features do not arise. In practice, however, most rough or non-planar surfaces are
non-developable (i.e. contain non-zero Gaussian curvature), and so complete
contact requires both bending and stretching of the plate. This is exemplified by
adhesion to a sphere that may represent a surface asperity or a large rounded
protrusion.

A dual case is the adhesion of a spherically bowed plate to a flat substrate.
This has been studied in the context of silicon wafer bonding (Turner & Spearing
2002; Pamp & Adams 2007). Such analyses use the Kirchhoff plate theory and
only consider elastic strain energy by bending, which is reasonable since wafer
bonding is governed by small angle, small strain deformations. In the current
analysis, deformation involves moderate angle changes and so nonlinear, von
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Figure 1. Elastic plate adhering to a rigid sphere of radius r: (a) circular plate of radius R;
(b) rectangular plate of width w and length L. Ua (light grey) and Ub (dark grey) denote the
contact and delaminated zones, respectively.
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Kármán plate theory is required (Reddy 2007). This introduces membrane strain
that, for the geometries of interest, often governs the elastic strain energy of
the plate.

In §2, stability conditions are derived for the delamination of thin circular and
rectangular plates from a rigid sphere. At equilibrium, the plate assumes a
configuration that minimizes the total potential energy, which equals the elastic
strain energies for bending and stretching minus the interfacial energy of
adhesion. For prescribed sphere radius and material and interfacial properties,
complete adhesion is limited to a range of plate geometries, which are presented
in §3. In §4, the theoretical predictions are compared to empirical measurements
obtained from the adhesion of low density polyethylene (LDPE) to smooth glass
spheres. In the case of rectangular plates, the peel strength may be estimated
using the Kendall peel theory (Kendall 1975), which has been used to model the
detachment of insect and lizard spatulae (Persson & Gorb 2003; Spolenak et al.
2005; Pugno 2007). In §5, the theory is modified for peeling from a sphere.
2. Analysis

Plate geometries are presented in figure 1. Each plate has an elastic modulus E,
Poisson’s ratio n and thickness H. The work of adhesion per area of contact
between the plate and the sphere is denoted by Wad. The plates make contact
with a rigid sphere that has a radius of curvature r. The radius or the width of
the contact zone is assumed to be several times smaller than r, and so whenever
convenient the sphere may be modelled as a paraboloid.

(a ) Free circular plate

As illustrated in figure 1a, a circular plate U of radius R adheres to a sphere
over a contact zone of radius v%R. Because the system is axisymmetric, U may
be parametrized by the radial arc length s and the distance z from the midplane.
When the plate adheres to the substrate, points on the midplane displace by an
amount usZus(s) and uzZuz(s) in the radial and vertical directions, respectively.
Proc. R. Soc. A (2008)
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For 3R!r, the sphere may be approximated as a paraboloid and so uzZKs2/2r.
Hence, for a von Kármán plate, the radial, hoop and shear strains on U have
the form
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respectively. The elastic strain energy density is
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As described for an adhering rod (Majidi 2007), the configuration U may be
decomposed into a contacting portion Ua (0%s%v) and non-contacting portion
Ub (v!s%R). Let Fa and Fb denote the total elastic strain energy contained in
Ua and Ub, respectively. So, for example,
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2psf dz ds: ð2:3Þ

Following this convention, the total potential energy of the system is

U ZFaCFbKpv2Wad: ð2:4Þ

At equilibrium, U is stationary with respect to the contact radius, which implies
that dU/dvZ0. Since Fb decreases monotonically with increasing v, a sufficient
condition for the stability of complete contact is that ðdFa=dvÞvZR%2pRWad.

The function usZus(s) at equilibrium is determined by solving the boundary-
value problem
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for the Lagrangian density
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obtained from the expression for Fa (Lanczos 1970). This yields
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Substituting this into (2.1) and computing Fa, it follows that complete contact is
stable if

R4

128r4
C
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The first and second terms are the strain energy release rate associated with plate
stretching and bending, respectively. For smaller plates such that R/r, only
bending is a significant factor in determining contact stability.
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(b ) Rectangular plate

A rectangular plate U of width w and length L adheres to a sphere in the
manner illustrated in figure 1b. It is assumed that 3w!r and so the sphere may
again be approximated as a paraboloid. Let the coordinates x and y denote the
distance from the plate centre along the intermediate (widthwise) and major
(lengthwise) axes, respectively. When performing the experiment described in
§4, it is observed that the delamination front is parallel to the major axis and so
the contact zone Ua is assumed to be a rectangle of length L and width v%w.

At equilibrium, we postulate that points on the midplane displace by an amount
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The von Kármán strains are thus
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The expression for elastic strain energy density is the same as in (2.2), with the
subscripts s and q substituted by x and y, respectively. Hence,
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Complete contact is stable when ðdFa=dvÞvZw%WadL, which implies
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As in (2.8), the first and second terms correspond to plate stretching and bending,
respectively.
3. Results

The stability criteria (2.8) and (2.12) determine whether a thin plate of known
geometry (R, w, H) will adhere to a hemisphere with radius of curvature r for
prescribed elastic modulus E, Poisson’s ratio n and interfacial work of
adhesion Wad. These equations may be rearranged to express the critical
thickness Hcr above which the plate will spontaneously delaminate from the
hemisphere,

Hcr Z
21=3k2=3K241=3ab

62=3bk1=3
; ð3:1Þ

where

aZ
R4=128r4; circular;

w4=128ð1Kn2Þr4; rectangular;

(

bZ 1=12ð1KnÞr2
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Figure 2. Critical thickness Hcr for the adhesion of a rectangular plate to a sphere of radius r;
varying plate width w (dashed lines); narrow plate (solid line), i.e. (w/r)2/H/r. The paraboloid
approximation for a sphere may not be valid for 3wOr and so values are not plotted in this range;
EZ1 GPa, nZ0.4, WadZ30 mJ mK2.
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For a narrow rectangular plate or small radius circular plate, this reduces to
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Values of Hcr for a rectangular plate are plotted in figure 2. As the ratio w/r
increases, values for wide and narrow plates diverge to the extent that the
critical thicknesses may differ by an order of magnitude. That is, whereas a wide
rectangular plate might spontaneously delaminate from a sphere, dividing this
plate into multiple narrow strips with the same thickness eliminates membrane
strain and allows complete adhesion. For example, consider an elastic plate
of modulus EZ1 GPa, Poisson’s ratio nZ0.4, thickness HZ25 mm and
width wZ1.5 mm in contact with a sphere of radius rZ10 mm and let
WadZ30 mJ mK2. As shown in figure 2, HOHcr and so the plate will partially
delaminate from the sphere. For complete contact, H must be reduced by a factor
of five. Alternatively, the plate may be divided into three 0.5 mm wide strips,
such that HcrOH.
4. Experiment

Adhesion experiments are performed between the LDPE and the spherical ends
of glass laboratoryware, which have radii r of 8, 12.5, 20 and 25 mm. Prior to the
experiment, the spherical glass surfaces are scrubbed with soap and water,
submerged in a beaker of sodium hydroxide (5 mol lK1, EM Science, Merck),
Proc. R. Soc. A (2008)
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Figure 3. Comparison of experimental and theoretical values for critical width wcr versus
sphere radius r. Experiment: HZ45 mm (circles) and HZ90 mm (crosses); theory: HZ45 mm,
WadZ0.32 J mK2 (solid line) and HZ90 mm, WadZ0.15 J mK2 (dashed line); Wad measured with
peel angle tests; EZ0.15 GPa (Rabinowitz & Brown 2001).
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rinsed in distilled water and then air dried. Next, sheets of LDPE (Film-Gard,
Carlisle Plastic, Inc.) and polyester are rinsed in distilled water and air dried.
The LDPE sheets are then stacked, placed between the polyester covers and
passed through a heated roller laminator (Catena 35, General Binding
Corporation) at 1108C and at a speed of 6.35!10K4 m sK1. This process yields
45 and 90 mm thick rectangular LDPE plates of 1 cm length that adhere well to
the glass.

Peel angle tests performed on flat glass slides with weights of 10, 20 and 50 g
suggest a work of adhesion Wad of 0.32 and 0.15 J mK2 for the 45 and 90 mm
plates, respectively. These values should not be regarded as the true work of
adhesion since the interfacial contact is not complete but limited by the
microscale non-planarity of the LDPE. This may explain why the thicker plate,
which has a greater bending stiffness and hence greater resistance to complete
planar contact, exhibits a lower measured Wad.

The rectangular plates are carefully pressed to the glass spheres. Scissors are
used to reduce the plate width 1 mm at a time until the edges of the plate cease
to delaminate in the manner illustrated in figure 1. This corresponds to the
critical width wcr below which complete adhesion is possible.

Measurements for wcr are plotted versus r in figure 3. Also shown is the
theoretical prediction for wcr that is obtained by solving (2.12) for w ,

wcr Z r
128ð1Kn2ÞWad

EH
K

32ð1CnÞH 2

3r2
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Theoretical wcr is calculated for EZ0.15 GPa (Rabinowitz & Brown 2001) and
nZ0.4. Reasonable agreement is obtained between the theoretical prediction and
the experimental measurement without the aid of data fitting. Stronger
agreement can be achieved by including the term dFb=dv into the l.h.s. of (2.12).
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Figure 4. Ratio c of peel strength for adhesion to a sphere of radius r versus a flat substrate for
wZ1 mm and varying plate thickness H; EZ1 GPa, nZ0.4, WadZ30 mJ mK2.
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For the geometries of interest, wcr is linearly dependent on r. This indicates
that the stability is governed by membrane strain and that the role of bending
stiffness is negligible. In contrast, adhesion to a cylinder is governed by bending
alone and is independent of plate width.
5. Peel strength

The force necessary to peel a rectangular plate from a rigid sphere is estimated
using a modified version of the Kendall peel theory (Kendall 1975). A stress s is
applied at an angle q along the edge yZL/2. The peel strength is the solution to
the equilibrium condition

s

E
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where Weff is the ‘effective’ interfacial work of adhesion, which accounts for the
elastic strain energy necessary for adhesion to a sphere. Following from (2.11):
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For contact with a flat substrate, WeffZWad, and (5.1) reduces to the Kendall
peel equation. When peeling from a sphere, Weff!Wad which implies that less
force is required to peel from a sphere than from a flat substrate.

For small peel angles (qz0), delamination occurs when the applied stress

reaches sZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WeffE=H

p
. In this case, we let cZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Weff=Wad

p
denote the ratio

of peel strength for adhesion to a sphere versus a flat substrate. The ratio c is
plotted in figure 4 for various values of plate thickness H and sphere radius r. As r
decreases, the peel strength drops dramatically and vanishes when H exceeds Hcr.

Other possible detachment modes include interfacial sliding that occurs when
the peeling force sHw exceeds the total interfacial shear strength tLw, where t is
the interfacial shear strength per unit area of contact. Also, for wide but thin
Proc. R. Soc. A (2008)



C. Majidi and R. S. Fearing1316
plates, stretching induced wrinkling relaxes the elastic strain energy Fb stored in
the delaminated portion of the plate. Following the arguments (Cerda &
Mahadevan 2003), Fb is approximately invariant to the delamination length and
so the coefficient 1/2 will drop from the second term in (5.1). This leads to, at

most, a factor of
ffiffiffi
2

p
reduction in peel strength, but wrinkling only occurs when a

critical strain is exceeded, prior to which other detachment modes may have
already been activated.
6. Concluding remarks

A thin elastic plate must bend and stretch in order to adhere to a rigid sphere.
For contact to be stable, the elastic strain energy associated with deformation
must be balanced by the interfacial energy of adhesion. Since both bending and
membrane (stretching) strains are involved, the von Kármán plate theory is
adopted. Stability criteria relating geometry, elasticity and interfacial properties
are derived using stationary principles.

The analysis yields critical values for plate thickness (H ) and width (w) or
radius (R) below which complete adhesion is possible for prescribed material
elasticity (E, n), sphere radius (r) and work of adhesion (Wad). These results
suggest that for some plates that do not adhere to a sphere, dividing into
multiple smaller plates of the same thickness will eliminate membrane strain and
allow complete adhesion.

For rectangular plates capable of complete adhesion to a sphere, peel strength
is estimated with a modified Kendall peel equation. Specifically, the work of
adhesion (Wad) for contact with a flat substrate is replaced by an effective value
(Weff) that accounts for bending and membrane strain energy necessary to
conform to a sphere over the contact zone. This modified term leads to a
reduction in peel strength compared with peeling from a flat substrate.

The aim of this analysis is to aid in the design of synthetic lamellar and
spatular structures for biologically inspired adhesives. However, the results are
general enough to be applicable to a wide range of issues in adhesion and thin
film sciences that involve non-developable substrates or surface features. The
analysis might also be extended to partial contact by including the effects of
buckling in the delaminated portion (Ub) of the plate.

This material is based upon work supported by the National Science Foundation under grant no.
EEC-0304730.
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