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a b s t r a c t

The adhesion of two heterogeneous, thin-walled structures is shown to be controlled by a boundary con-
dition that balances mechanical energies with the work of adhesion at the edge of the contact zone. This
boundary condition is well-known in fracture mechanics but is here rederived with plate theory and rep-
resented in a form that is easy to use. This formulation is applicable either to problems in which the con-
tact area is a priori unknown, or in problems in which the bonded area is predefined and it is the onset of
debonding that is of interest. The simplified boundary condition is shown to be very useful and simple to
use in both cases, but particularly in the latter class of problems. In the case of one-dimensional or axi-
symmetric problems where one of the bodies is rigid, this representation is equivalent to the Moment-
Discontinuity-Method (MDM) introduced by Pamp and Adams and Majidi and Adams.

! 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Adhesion of shells, plates, and other thin-walled structures gov-
erns the functionality of many natural systems, fabrication meth-
ods, and emerging technologies, from biological cell adhesion
(Seifert and Lipowsky, 1990; Wan and Liu, 2001) to semiconductor
wafer bonding (Tong and Gosele, 1994; Pamp and Adams, 2007;
Turner and Spearing, 2002) and flexible electronics (Vella et al.,
2009). Progress in these fields is aided by theories, computational
simulations, and design rules that are often based on a contact po-
tential representation of adhesion. This approach was formalized
in Kendall’s theory of adhesion (Kendall, 1971) and has its origins
in Griffith’s theory of fracture (Griffith, 1921). Both theories require
the minimization of potential energy, which is composed not only
of surface and interfacial energy but also the elastic strain energy
of the deforming bodies and the work of external loads.

Even in the case of one-dimensional and axisymmetric systems,
performing such an energy minimization can lead to extremely
lengthy and tedious calculations (Pamp and Adams, 2007). The
resulting internal forces and bending moment undergo a disconti-
nuity across the edge of the contact area Xc (Pamp and Adams,
2007; Turner and Spearing, 2002; Majidi and Adams, 2009; Spring-
man and Bassani, 2008), which are induced by the adhesive inter-
actions. In Majidi and Adams (2009) it was shown that these jumps
correspond to a boundary condition at the edge of Xc that is

obtained by balancing the interfacial work of adhesion ðcÞ with
the strain energy release rate ðGÞ.

Alternatively the boundary condition ðG ¼ cÞ can be determined
using methods from fracture mechanics such as the J-integral
(Glassmaker and Hui, 2004; Rice, 1968) and the stress intensity
factor (Suo and Hutchinson, 1990). Such methods, however, go be-
yond the scope of conventional plate or shell theories and require
the evaluation of internal stress and strain fields. Nonetheless, the
theory presented here is based on the same hypotheses of linear
elasticity and Griffith’s contact potential that furnish linear elastic
fracture mechanics (LEFM).

Here, the boundary condition for adhesion between plates,
membranes, and shells is derived and expressed entirely within
the context of conventional shell theory. In contrast to some of
the previous solutions (Seifert and Lipowsky, 1990; Majidi and
Adams, 2009; Glassmaker and Hui, 2004), the current result is va-
lid for structures that share an irregular, non-axisymmetric contact
area and that are dissimilar in shape and elastic rigidity. In addition
to flexure and stretching, this result also includes transverse and
in-plane shear deformation. Hence, the result is a generalization
to the solution obtained in Suo and Hutchinson (1990) for the deb-
onding of a laminated composite.

This formulation is applied to examples that represent two dis-
tinct classes of plate adhesion problems. In one example, the shape
of the contact area Xc is not known a priori and must be deter-
mined by solving a boundary value problem. In the other example,
which concerns delamination in a MEMS structure, Xc is prede-
fined and it is the onset of debonding that is of interest. In both
cases, the boundary condition is quite useful and greatly simplifies
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the complexity of the analysis. This is particularly true for the lat-
ter class of problems in which the onset of debonding must be
determined.

2. System description

The adhering thin-walled structures are treated as two-dimen-
sional surfaces that adhere over a domain Xc. As illustrated in
Fig. 1a, the non-contacting portions of the two surfaces are de-
noted by Xa and Xb. The surfaces intersect along the interface
B ¼ Xc \Xa ¼ Xc \Xb. The space curve B and surfaces Xa; Xb,
and Xc are all embedded in the Euclidean space R3.

The reference kinematics are defined with respect to the final
configuration of the system at equilibrium. Points X 2 Xc are un-
iquely identified using a curvilinear coordinate system fn; fg that
is fitted to the interface B. As shown in Fig. 1a, the coordinate
curves for n and f are normal and tangent to the boundary B,
respectively. The arclength v is defined such that B ¼ fX : n ¼ vg
and, depending on the coordinate system selected, may or may
not be a function of f. The unit normal vector n is thus equivalent
to the normalized director @X=@n evaluated along X 2 B. Similarly,
the unit tangent vector t equals the normalized director @X=@f.

Referring to the inset in Fig. 1a, the curvature j is defined as
j ¼ dw=dn, where w is the rotation in the n direction of a line ini-
tially perpendicular to the midplane (Marguerre and Woernle,
1969). It is noted that in the absence of transverse shear deforma-
tion, j would represent the curvature of the neutral surface. Even
in the natural (non-contacting, undeformed) configuration, the
plates may have intrinsic curvature j0, as in the case of a cylindri-
cal shell. In addition to bending strains, the plates are also subject
to a membrane strain l along the n direction. Membrane and
bending strains will also occur in the t direction, although these
values drop out when deriving the boundary condition. Also, for
the sake of clarity, transverse and in-plane shear deformations
are ignored in the derivation but are later accounted for with cor-
rection terms that are added to the final result.

Deformation is limited to elastic modes of flexure (bending)
and planar stretching. As in conventional plate and shell theo-
ries, these deformations induce line forces and bending mo-
ments. These internal loads are governed by the elastic
rigidities of flexure D ¼ EH3=12ð1$ m2Þ and stretching
K ¼ EH=ð1$ m2Þ, where E is the elastic modulus and m is Pois-
son’s ratio (Marguerre and Woernle, 1969). In general, these
elastic rigidities will be different for the two plates and will
be denoted by Da and Ka. Here, as in the remainder of the paper,
a 2 fa; bg and the indices ‘a’, ‘b’, and ‘c’ denote the values on
surfaces Xa; Xb, and Xc , respectively.

Within the contact zone Xc , the plates are bonded together and
behave like a composite. Hence, bending will increase the average
axial strain in each plate by an amount la

c :

la
c ¼ j0

a $ jc
! " Ha

2
þ Hb $ h

# $
and lb

c ¼ jc $ j0
b

! "
h$ Hb

2

# $
:

ð1Þ

Here, h denotes the distance of the neutral surface from the
non-contacting side of the plate corresponding to Xb:

h ¼ KaHa þ KbHb þ 2KaHb

2ðKa þ KbÞ
: ð2Þ

Eqs. (1) and (2) are adapted from Eqs. (1.1) and (AIII.1) in Suo
and Hutchinson (1990). These expressions arise because the two
plates act together as a single composite plate in Xc .

Variations in the elastic deformation of the plates are balanced
by the mechanical work of external forces. In general, these may
include body forces and external tractions that are applied on the
surface or along the edges. As the plates deform, these tractions
will displace and exert mechanical work on the system. The plates
are also subjected to interfacial forces associated with the adhesive
bonds formed inside the contact zone Xc. As the plates come out of
contact, these interfacial forces perform mechanical work that is
approximately equal to the work of adhesion c. In reality, c corre-
sponds to the work necessary to displace two surfaces of unit area
from intimate contact to infinite separation. By replacing the adhe-
sive forces with the contact potential c we are implicitly assuming
that the range of the interfacial forces is negligible compared to the
interfacial gap between the non-contacting surfaces. Such an
approximation is reasonable for micron and millimeter scale sys-
tems, where the interfacial forces are due to short-range chemical
or van der Waals interactions.

3. Analysis

The total potential energy of the system P is composed of the
potential energy associated with the mechanical work of external
forces (including adhesion, c) as well as the strain energy w associ-
ated with elastic deformation. At equilibrium, P must be station-
ary with respect to arbitrary, infinitesimal, and kinematically
admissible variations in the elastic deformation of the surfaces.
In contrast to conventional plate and shell theories, the current
system contains a free interface B ¼ fX : n ¼ vg that is also subject
to variation. Specifically,Pmust be stationary with respect to vari-
ations of the form B ! B0 ¼ fX : n ¼ v $ !/g, where / ¼ /ðfÞ is
arbitrary and ! > 0 is infinitesimally small.

Fig. 1. (a) Thin-walled structures adhere over the domain Xc; fn; fg represents a boundary-fitted curvilinear coordinate system, where the coordinate curves for n and f are
normal and tangent to the boundaryB, respectively. As shown in the inset, the surface has a curvature j in the n direction. (b) At equilibrium, the total potential energy of the
system P must be stationary with respect to variations of the form B ! B0 . This is identified with displacing the adhesion front B by an amount dv ¼ j!/j, where the
function / ¼ /ðfÞ is arbitrary and ! is infinitesimally small.
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Physically, the variation B ! B0 corresponds to exchanging
material line segments dv of length !j/j between the contact zone
Xc and the non-contacting portions Xa and Xb. This process, illus-
trated in Fig. 1b, leads to a variation in the potential energy of the
form

dP ¼
Z

B

fdwþ c!/þ dWgdf: ð3Þ

Here, dw is the change in the elastic strain energy stored in the
segment dv and dW is the mechanical work performed by that seg-
ment on Xa; Xb, and the remaining portion of Xc .

At equilibrium, the variation dP must vanish for arbitrary
/ ¼ /ðfÞ. The first step in evaluating dP is to determine the varia-
tion in strain energy dw. Across the boundaryB of the contact zone,
the bending curvature j and membrane strain l (both in the n
direction) will undergo a jump. In contrast, bending curvature
and stretch in the tangent t direction remain fixed. Therefore, as
the segment dv delaminates, its elastic strain energy changes by
an amount

dw ¼
1
2

Da ðja $ j0
aÞ

2 $ ðjc $ j0
aÞ

2
h i

þ Ka l2
a $ ðlc þ la

c Þ
2

h in o
!/;

ð4Þ

which must be summed over the indices a 2 fa; bg.
The next step is to determine the mechanical work dW per-

formed by the segment dv on the rest of the system. This is equiv-
alent to the variation in the potential energy of the rest of the
system and is equal and opposite to the work performed on dv .
Therefore, dW has the form

dW ¼ $ Daðja $ j0
aÞðja $ jcÞ þ Kala la $ lc þ la

c

! "% &' (
!/: ð5Þ

Combining these equations and noting that the integrand in (3)
must vanish for arbitrary /, it follows that

c ¼ 1
2

Daðja $ jcÞ2 þ Ka la $ lc þ la
c

! "% &2n o
: ð6Þ

This result is equivalent to the Griffith balance G ¼ c used in
LEFM and is consistent with the boundary condition for a delami-
nating composite presented in Suo and Hutchinson (1990). Eq. (6)
might also be derived using the J-integral method (Rice, 1968),
although this requires the introduction of second-order tensors
that are beyond the scope of the present theory. Lastly, this result
is a limit of the boundary condition obtained from cohesive zone
models, such as the one presented in Pamp and Adams (2007).

In the special case when one of the surfaces, say Xb, is rigid, the
boundary condition becomes

c ¼ 1
2

Daðja $ jcÞ2 þ Kaðla $ lcÞ
2

n o
: ð7Þ

This corresponds to the jump condition derived in Majidi and
Adams Majidi and Adams (2009) except that here we have not as-
sumed that the plates are axisymmetric.

4. Solution with shear deformation

The boundary condition (6) is applicable to systems such as thin
plates and membranes for which shear deformation can be ne-
glected. In general, however, elastic shear strains may also contrib-
ute to the potential energy of the system. Define z ¼ n& t and letu
and g denote the transverse and in-plane shear strains in the n–z
and n–t planes, respectively. These correspond to the transverse
shear rigidity St ¼ ð5=6ÞGH and in-plane shear rigidity Sp ¼ GH,
where G ¼ E=2ð1þ mÞ is the shear modulus (Marguerre and Woe-
rnle, 1969). Here, the shear correction factor 5/6 is obtained by
assuming a parabolic distribution of shear stress through the thick-
ness of the plate (Reissner, 1945). In general, these rigidities will be

different for the two plates and are denoted by Sta and Spa, where
again a 2 fa; bg.

The contributions of shear deformation are handled in much the
same way as the strain l. At the boundary B, both u and g may
undergo a jump and so the boundary condition becomes

c ¼ 1
2

Daðja $ jcÞ2 þ Ka la $ ðlc þ la
c Þ

% &2 þ Spaðga $ gcÞ
2

n

þ Stau2
a $ 2Stauauc þ Stcu2

c

(
; ð8Þ

where Stc is the rigidity of the bonded plates. It is important to note
that because of the transverse shear strain u; j ¼ dw=dn is no long-
er equivalent to the curvature of the neutral surface. Eq. (8) repre-
sents a generalization of the boundary condition presented in Suo
and Hutchinson (1990).

5. Discussion and examples

Stationary principles and mechanics are used to derive the
boundary condition (8) for adhesion between elastic plates with
dissimilar geometry and stiffness. This boundary condition is
applicable at the edge of the contact zone and suggests an adhesion
induced jump in elastic bending curvature, stretch, and shear
strain. It is valid for all plate geometries and loading conditions
and allows such problems to be studied with conventional plate
theory. Moreover, adding Eq. (8) to the governing balance laws
eliminates the need to rederive the equilibrium condition dP ¼ 0
for each system that is studied.

There are two classes of adhesion problems in which this
method can be expected to be useful. The first type of problem
is one in which a plate makes contact with either another plate
or with a rigid surface in such a manner that the contact zone
need not be circular nor uniform across its width. In these situa-
tions the aim is to determine the contact area, after which dis-
placements and/or stresses can be determined as needed. The
other class of problems is characterized by a plate in bonded con-
tact over an arbitrarily shaped predefined area with either an-
other plate or with a rigid surface. In those cases the question
to be answered is ‘‘Will debonding occur and, if so, where will
debonding initiate?” Two examples will be given – one for each
type of problem.

5.1. Compression induced delamination

Consider a long flat plate of flexural rigidity D lying on a rigid
surface and under uniform compression in the x-direction with
force per unit length Q. The possibility of separation from the sur-
face non-uniformly in the y-direction is investigated. The simpler
case of uniformity in the y-direction is possible but not considered
here. The homogeneous solution of the partial differential equation
for an elastic plate compressed in the x-direction is given by Jahan-
shahi and Dundurs (1964) as

wðr; hÞ ¼ sin kx
X2N$1

k¼1;3;5;...

AkJkðkrÞ cos kh

þ cos kx
X2N$2

k¼0;2;4;...

AkJkðkrÞ cos kh; ð9Þ

where wðr; hÞ is the transverse deflection, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q=4D

p
; Jkð:Þ are the

Bessel functions of the first kind, and the series has been truncated
to a total of 2N terms. It is noted that the more general solution of
the partial differential equation contains Bessel functions of the sec-
ond kind that lead to unbounded behavior at the origin and are thus
omitted. Also symmetry about both the x- and y-directions has been
used in order to eliminate the even terms of Ak and the odd terms of
Bk.
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The solution procedure is to guess a contact boundary R ¼ RðhÞ
for N uniformly spaced hi in ½0;p=2( and using wðRi; hiÞ ¼ 0 and
MnnðRi; hiÞ ¼

ffiffiffiffiffiffiffiffiffi
2Dc

p
for i ¼ 1;2; . . .N to solve the resulting linear

algebraic equations. The condition Mnn ¼
ffiffiffiffiffiffiffiffiffi
2Dc

p
is obtained from

(7) by letting Da ¼ D, assuming a frictionless contact (such that
la ¼ lc), noting that jc ¼ 0, and using the constitutive law to re-
place ja with Mnn=D. In general the guess for Ri ¼ RðhiÞ will not
solve the zero slope boundary condition

@w
@r

ðRi; hiÞ ¼ 0; i ¼ 1;2; . . .N: ð10Þ

It is noted that because the displacement is zero along the
boundary, the requirement that the slope normal to the boundary
vanishes becomes equivalent to (10). Thus (10) represents N non-
linear algebraic equations for Ri which can be solved by standard
methods. The resulting shape of the separation zone is shown in
Fig. 2a.

5.2. MEMS blister test

As an example of the second class of problems consider the blis-
ter test often used to test materials in MEMS. A layer of the test
material is deposited on a wafer and then a rectangular (usually
square) window is etched from the back-side of the wafer leaving
a rectangular portion of the thin test material exposed, as shown in
Fig. 2b. A pressure is then exerted on the material by a gas and the
plate deflection is measured, thus allowing material properties,
such as Young’s modulus, to be determined. This test is not used
to measure adhesion; the assumption is that there is sufficient
adhesion to maintain a clamped condition all along the edges. In
this problem our goal is to determine the maximum applied pres-
sure for which the bond will remain intact. By applying Eq. (6) it is
seen that debonding will initiate at a point along the boundary for
which the internal bending moment Mnn along an edge becomes
equal to

ffiffiffiffiffiffiffiffiffi
2Dc

p
.

The solution for this problem is extremely simple. The maxi-
mum moment in the normal direction, along the boundary of a
rectangular plate clamped along its edges and subjected to a uni-
form pressure, occurs at the midpoints of the longer edge (Timo-
shenko and Woinowsky-Krieger, 1959). For a square plate this
maximum moment is given by Mnnð)a=2;0Þ ¼ 0:0513 pa2. Using
this result gives a critical pressure ðpcÞ of pc ¼ 27:6

ffiffiffiffiffiffi
Dc

p
=a2, where

‘‘a” is the plate width. If the applied pressure is less than this crit-
ical pressure, debonding will not occur. If it is greater than the crit-
ical pressure, debonding will commence at the midpoints of the
plate boundary. To the best of our knowledge, experiments which
measure the onset of debonding do not exist.

The implied assumption in solving both this problem and the
example in Section 5.1 is that the region bonded to the substrate
does not deform. Although the validity of this assumption may

appear to be obvious, it has recently been shown (Ryan et al.,
2008), in the context of a one-dimensional problem, that a one-
sided bond to a rigid surface can cause unexpected deformation
due to a combination of in-plane axial deformation and transverse
shear deformation. In, for example, the case of a bridge structure
this effect was shown to be important for a length-to-thickness ra-
tio as large as about twenty. This behavior is in contrast to shear
deformation which is only significant for lengths less than about
10 times the thickness. Although a corresponding theory of one-
sided bonding for general two-dimensional plate problems is not
available, we assume that a similar trend holds. Thus our analysis
of the blister test can be expected to be valid for a=H > 20.

The particular advantage of using this method to solve this type
of problem is that any finite element code can be used to solve a
plate problem with known boundaries. The maximum value of
the right-hand-side of Eq. (6) along the boundary can then be cal-
culated. If this quantity is greater than c then debonding will start;
otherwise it will not.

6. Conclusions

It has been shown that a simple boundary condition can be used
in place of energy minimization in order to solve adhesion prob-
lems with elastic plates with arbitrary contact geometries. This
boundary condition represents a balance between mechanical
energies with the work of adhesion. This formulation can be ap-
plied either to problems where the contact area is a priori un-
known, or to problems in which the bonded area is predefined
and it is the onset of debonding that is of interest. The simplified
boundary condition is shown to be particularly useful and simple
to use in the latter class of problems. Finite element programs
can be used to solve for stresses in a standard manner. If the
right-hand-side of Eq. (6) is greater/less than the work of adhesion,
then debonding will/will-not occur.
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