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a b s t r a c t

At the submicron scale, an elastic fiber adheres to a rigid surface when the surface forces
induced by electrostatic, capillary, or van der Waals interactions exceed the elastic restor-
ing forces for bending. Adhesion is aided by the application of a shear load to the base of
the fiber, which will initiate or increase the length of side contact. The presence of a shear
force is necessary for the attachment of a gecko-inspired nanofiber array adhesive, which
spontaneously detaches once the shear load is removed. Treating the fiber as an elastica,
we derive a relationship between fiber geometry, work of adhesion, applied shear load
and length of side contact.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Adhesion of elastic bodies is an important issue in engineering structures at the submicron scale, where surface forces
generated by electrostatic, chemical, and van der Waals interactions can exceed the restoring forces for elastic deformation.
Previously, Majidi (2007) and Majidi et al. (2005) showed that when the work of adhesion induced by these surface effects is
sufficiently large, an initially vertical nanofiber will bend over and spontaneously adhere to a horizontal surface. Here, we
show that applying a shear load at the base increases the contact length and can also reduce the energy barrier necessary
to initiate energetically stable side contact.

In the following analysis, the nanofiber is treated as an elastica and the governing equations are derived from the prin-
ciple of stationary potential energy. It shows that for certain fiber geometries, side contact is only possible when a suffi-
ciently large shear load is applied to the base of the fiber. This result may explain the shear-activated property observed
with the gecko-inspired adhesive introduced by Lee et al. (2008). As with the natural gecko, the synthetic adhesive is an ar-
ray of vertically aligned, high aspect ratio nanofibers (length L = 20 lm, radius R = 300 nm) composed entirely of a stiff mate-
rial (polypropylene, elastic modulus E = 1 GPa) that only adheres under shear loading – once the shear load is removed the
adhesive spontaneously delaminates from the surface.

2. Preliminaries

The fiber is treated as an elastica X parameterized by the convected coordinate n. To distinguish between the contacting
and non-contacting portions of the elastica, X is decomposed into closed complementary subregions Xa and Xb, which are
identified with the coordinates [0,a] and [a,L], respectively, where n = 0 is the base of the elastica, L is the rod length, and a is
the position of the ‘‘crack tip” formed between the elastica and contacting surface. The elastica and coordinate system are
illustrated in Fig. 1.
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In its natural (undeformed) configuration, the elastica is vertical and points along X have the position R = ne1, where
{e1,e2} is the fixed Cartesian frame. During deformation, the elastica bends with a slope h = h(n) with respect to the e1 axis.
In this configuration, the position of the material points are defined by the mapping r = r(n) = xe1 + ye2, which is related to
the slope through the identity r0 = coshe1 + sinhe2. Here, the prime denotes the derivative with respect to n. The function
h = h(n) is restricted by the boundary conditions h(0) = 0 and h(n) = p/2 "n 2 [a,L].

Under pure shear loading, the elastica is subject to a force F = �Ve2 at n = 0. Define x as the mechanical work required to
overcome adhesion and displace a unit length of the fiber from a position of stable contact to a distance of infinite separation
between the fiber and substrate. For the surface forces of interest, most of this work is performed over only a few nanometers
of displacement and so it will be assumed that adhesion energy is absent along the non-contacting portion Xa. The total po-
tential energy of the system may thus be expressed as

U ¼
Z a

0

1
2

EIðh0Þ2dn�
Z L

a
xdnþ F � ðrðLÞ � rð0ÞÞ;

¼
Z a

0

1
2

EIðh0Þ2 � V sin h

� �
dn� ðV þxÞðL� aÞ; ð1Þ

where E is the elastic modulus and I is the area moment of inertia for the elastica cross section.

3. Analysis

At equilibrium, the potential energy U is stationary with respect to infinitesimal, kinematically admissible variations in h
and a. The stationary condition for variations in h simply leads to the Euler–Lagrange differential equation

h00 þ V
EI

cos h ¼ 0 8n 2 ½0; a�; ð2Þ

which is solved for the boundary conditions h(0) = 0 and h(a) = p/2. The condition that U is stationary with respect to a im-
plies dU/da = 0, which yields the natural boundary condition (Bottega, 1991; Oyharcabal and Frisch, 2005; Seifert, 1991)

x ¼ 1
2

EI h0ðaÞf g2
: ð3Þ

In summary, the unknowns h = h(n) and a are the solutions to the boundary value problem

h00 þ V
EI

cos h ¼ 0 hð0Þ ¼ 0 hðaÞ ¼ p
2

h0ðaÞ ¼
ffiffiffiffiffiffiffi
2x
EI

r
: ð4Þ

4. Solution

Eq. (4)1 has the general solution

hðnÞ ¼ 2 am
nþ C2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
;

4j2

2j2 þ C1

� �
� p

2
; ð5Þ

Fig. 1. Illustration of the elastica in side contact under a shear load V.
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where am(u,m) is the Jacobi amplitude, m is the modulus, j ¼
ffiffiffiffiffiffiffiffiffiffi
V=EI

p
, and C1 and C2 are the constants of integration. Next,

the boundary condition h(0) = 0 implies

am
C2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j2 þ C1

p
;

4j2

2j2 þ C1

� �
¼ p

4
: ð6Þ

The inverse function of am is given by the elliptic integral of the first kind: am�1(/,m) = u = F(/,m) (Byrd and Friedman,
1971). Defining C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4j2=ð2j2 þ C1Þ

p
it follows from (6) that C2 = (C/j)F(p/4,C2). Thus

h ¼ 2 am
jn
C
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4
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� �
;C2
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� p

2
: ð7Þ

Next, consider the boundary condition h(a) = p/2. Substituting this into (7) and solving for a yields

a ¼ C
j

KðC2Þ � F
p
4
;C2

� �n o
ð8Þ

where K(m) = F(p/2,m) is the complete elliptic integral of the first kind. Substituting the expressions for h and a into the nat-
ural boundary condition (4)4 implies

2j
C

dnðKðC2Þ;C2Þ ¼
ffiffiffiffiffiffiffi
2x
EI

r
: ð9Þ

The elliptic function dn(u,m) is defined as dnðu;mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m sin2 /

q
. For K(m), / = p/2 and so dn(K(m),m) reduces to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m
p

.
Hence, (9) implies C = (1 + x/2V)�1/2. Lastly, substituting C and j into the expressions for (7) and (8) yield

hðnÞ ¼ 2 am n
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5. Discussion

The solutions (10) and (11) indicate the elastica configuration for a prescribed shear load V, work of adhesion per unit
length of side contact x, elastic modulus E, and area moment of inertia I. Define the characteristic length ‘ ¼

ffiffiffiffiffiffiffiffiffiffi
EI=V

p
and

the non-dimensional parameters â ¼ a=‘, n̂ ¼ n=‘, and a = 1/(1 + x/2V). It then follows that:

hðn̂Þ ¼ 2 am
n̂ffiffiffi
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4
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Since both x and V are non-negative, a 2 [0,1].
A plot of â versus a is presented in Fig. 2a. For a ‘‘sticky” fiber, where x is large, and a ? 0, â vanishes. Physically this

means that the length of the non-contacting portion Xa goes to zero and the entire fiber will spontaneously bend over
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Fig. 2. (a) Plot of â ¼ a
ffiffiffiffiffiffiffiffiffiffi
V=EI

p
versus a = 1/(1 + x/2V) and (b) shape of elastica for, from right, V = 10, 160, 500, 970 nN; E = 1 GPa, L = 20 lm, I = 0.0064 lm4,

x = 1.7 nN; M0 = EIh0 represents the moment acting on the base of the elastica.
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and adhere to the surface along its side. In contrast, for a non-sticky fiber (x ? 0 and a ? 1), the plot shows that â!1.
Since side contact only occurs for fibers of length L < â‘, this implies that a non-sticky fiber will not adhere in side contact.

Consider the nanofibers contained in the synthetic gecko adhesive presented in Lee et al. (2008). The fibers have an elastic
modulus E = 1 GPa, length L = 20 lm, radius R = 0.3 lm, and area moment of inertia I = 0.0064 lm4. Majidi et al. (2005) show
that for an elastic cylinder in contact with a flat surface

x ¼ 6
ð1� m2ÞR2W4

ad

pE

( )1=3

; ð13Þ

where m is Poisson’s ratio and Wad is the work of adhesion per unit area of contact. For polypropylene, m = 0.3 and
Wad = 30 mJ/m2, and so calculating (13) yields x = 1.7 nN. Also, following a Kendall peel model of adhesion, Lee et al.
(2008) show that V is bounded above by V� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EpR2x

p
¼ 970 nN. These values correspond to ‘ = 2.6 lm and a = 0.999.

Substituting a into (12)2, â ¼ 4, and so a ¼ â‘ ¼ 10:4 lm. Since this is less than L = 20 lm, the fiber will engage in side con-
tact over a length of 9.6 lm. This is close to the value calculated by Lee et al. (2008), who obtain a numerical solution to (4)
using a finite difference program. Next, h is evaluated for n̂ 2 ½0; â� by substituting a into (12)1. Integrating sin(h) and cos(h)
yields the coordinates of the material points along Xa which are plotted in Fig. 2b for V 6 V*. Side contact occurs for V > Vcr,
where Vcr is the critical value at which L ¼ â‘ and is computed as 160 nN. That is, side contact will only be possible if the
interface can support a shear load of greater than 160 nN.

In closing, elastica theory and stationary principles are used to determine the adhesion of an elastic fiber to a rigid surface.
If the work of adhesion generated by surface forces is sufficiently large the fiber will spontaneously adhere to the surface and
make side contact. For the nanofibers calculated in the synthetic gecko adhesive presented in Lee et al. (2008), side contact is
only possible when the base of the fiber is subject to a shear load. This feature allows for a controllable adhesive that only
attaches to a surface under shear loading and spontaneously detaches once the shear load is removed.
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