
http://mms.sagepub.com

Mathematics and Mechanics of Solids 

DOI: 10.1177/1081286506068823 
 2008; 13; 3 originally published online Jan 31, 2007; Mathematics and Mechanics of Solids

Carmel Majidi, Richard E. Groff and Ron S. Fearing 
 Analysis of Shaft-Loaded Membrane Delamination Using Stationary Principles

http://mms.sagepub.com/cgi/content/abstract/13/1/3
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 can be found at:Mathematics and Mechanics of Solids Additional services and information for 

 http://mms.sagepub.com/cgi/alerts Email Alerts:

 http://mms.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints: 

 http://www.sagepub.co.uk/journalsPermissions.navPermissions: 

 http://mms.sagepub.com/cgi/content/refs/13/1/3 Citations

 at PRINCETON UNIV LIBRARY on December 1, 2008 http://mms.sagepub.comDownloaded from 

http://mms.sagepub.com/cgi/alerts
http://mms.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://mms.sagepub.com/cgi/content/refs/13/1/3
http://mms.sagepub.com
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Abstract: The following analysis investigates the delamination of an elastic membrane which on one side
adheres to a smooth substrate while the other side is attached to a rigid cylindrical shaft. When the shaft
is pulled perpendicularly from the substrate, this system is equivalent to the blister test of Malyshev and
Salganik (International Journal of Fracture Mechanics, 1, 114 (1965)) and a solution is derived using the
principle of minimum potential energy. Delamination can also be caused by rotating the shaft, which may
be induced by a shear load and/or moment applied to the free end. For this more complicated system,
an approximate solution is obtained from upper and lower bounds on strain energy that are derived from
stationary principles with restricted deformation and stress fields, respectively. Beyond their applicability to
blister tests, these results are relevant to the emerging study of biologically-inspired adhesives, as membranes
constitute a critical attachment structure for a variety of wall-clinging organisms.

Key Words: Non-linear membrane theory, stationary principles, complementary energy, Hencky strain measure

1. INTRODUCTION

A shaft-loaded membrane, such as the one illustrated in Figure 1, may be detached from
a substrate either by pulling the shaft perpendicularly from the substrate (equivalent to the
blister test of [1]) or by rotating the shaft about the substrate plane. Systems related to the
normal pull-off mode have been studied [2, 3] and are relevant to applications ranging from
MEMS devices [4] to intracellular binding [5]. There has also been recent interest in the role
of shaft-supported thin plates found in the adhesive system of wall climbing geckos [6, 7, 8,
9] (more general information on gecko adhesion can be found in the popular literature [10,
11]). Each plate, known as a spatula, has a thickness of 5–10 nanometers and is connected
along one edge to a terminal branch of the shaft, known as a seta. The spatulae, due to their
thin geometry, can achieve intimate contact with a micro-rough surface with little elastic
strain and thus adhere through short-range van der Waals attraction [12]. Because they are
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4 C. MAJIDI ET AL.

Figure 1. Illustration of shaft loaded membrane� (a) reference configuration, (b) delamination under
normal translation, (c) delamination under rotation.

supported at one edge, however, gecko spatulae peel easily under normal loading, following
the Kendall peel model [9, 13]. For a synthetic bio-inspired adhesive with high normal
load resistance, we propose a symmetric structure wherein the membrane-like spatula is
connected to the supporting shaft at its center rather than along its edge. The following
analysis presents the governing equations necessary to predict the detachment resistance to
both normal and moment loading of the proposed design.

Here we consider an isotropic elastic membrane sheet that is connected at its center to a
rigid cylindrical shaft. For normal pull-off, the delamination zone is axisymmetric and can
be parameterized by radius alone, allowing the computation of a strain energy release rate
[2]. If delamination is generated by shaft rotation, however, its shape must be identified by
a real-valued function, significantly complicating the analysis. For this loading condition, it
is convenient to consider only a restricted set of kinematically admissible deformation fields
and statically admissible stress fields. Applying the stationary principles presented in [14]
then yields upper and lower bounds for the strain energy functional. This method employs
the principle of maximum complementary energy, a technique that has been applied to other
problems in non-linear membrane theory, including the study of a clamped circular mem-
brane that sags under its own weight [15, 16], the axial extension of a cylindrical membrane
[14], and the puncturing of a thin elastic sheet [17]. For detailed derivation and discussion
of the principle of maximum complementary energy, the interested reader should refer to
sections in [18, 19, 20].

Here we adopt the classical strain-energy function of infinitesimal isotropic elasticity.
To allow the theory to be valid for moderately large deformations, the infinitesimal strains
are replaced by the Hencky (logarithmic) measure for finite strain [21, 22]. In the case of
delamination by shaft rotation, it is demonstrated that for the geometry and loading range of
interest, a similar result can be obtained with the Green strain.

An overview of the governing equations and principles for the shaft-loaded membrane
are presented in Section 2. This includes a summary of the kinematics and constitutive law,
as well as a discussion on the stationary principles of minimum potential and maximum com-
plementary energy. Next, these principles are applied to the delamination of the shaft-loaded
membrane. An approximate solution is derived for the case of delamination under shaft rota-
tion. Numerical results are presented for both systems in Section 5. For delamination under
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ANALYSIS OF SHAFT-LOADED MEMBRANE DELAMINATION 5

Figure 2. Local coordinate system in reference and deformed configurations.

rotation, the solution accuracy is demonstrated by the tightness in the bounds furnished by
the two variational methods.

2. GOVERNING EQUATIONS

Let � represent the surface of a rigid, infinite half-space and define the right-handed ortho-
normal triad �e1� e2� e3� such that e3 is normal to the half-space. Next, let X � X1e1�X2e2�
X3e3 denote the position of any point in �3 with respect to the origin O � �. In addition,
let �s� �� X3� represent a cylindrical coordinate system with origin O and polar axis e1 and
define the right-handed orthonormal triad �es� e� � e3� such that

es � cos �e1 � sin �e2 and e� � e3 � es� (1)

The two coordinate systems are related by the equations

X1 � s cos � and X2 � s sin �� (2)

Consider an homogeneous, elastic membrane that on one side adheres to the half-space
and on the other side is attached to the base �0 of a rigid cylindrical shaft. Delamination
is possible by translating and/or rotating the shaft base to a new configuration �. Let �
denote the midplane of the delaminated portion of the membrane that is not in contact with
the shaft and identify its boundary �� with the function ���� � 	 	� � [0� 2
] through the
representation

�� � �X � �3 : s � �	� ������ � � [0� 2
]�� (3)

The function ����, which defines the amount of delaminated material, may also be used to
define the surface � in its natural configuration:
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6 C. MAJIDI ET AL.

�0 � �X � �3 : s � [	� ����]� � � [0� 2
 ]� X3 � 0�� (4)

2.1. Kinematics

Let the function � : �0 
 � map a point X � �0 to its position x in the deformed
configuration �, i.e.

x � � �X� for X � �0� (5)

Membrane theory assumes that there is no shearing along the tangent plane, and so the
deformation may be expressed as

� �X� � X� X3e3 � u0 � �X3 � q�en (6)

where u0 � u0�s� �� X3� is the displacement of a point on the midplane�0, en is the unit nor-
mal to the deformed surface � and q � q�s� �� X3� is the displacement of points away from
the midplane relative to the deformed orientation. By definition of midplane, the function q
vanishes identically on the midplane, and thus must satisfy the following conditions:

q�X3 � 0� �
�
�q

�s

�
X3�0

� 1

s

�
�q

��

�
X3�0

� 0� (7)

Consider the vectors

e�s � es � �

�s
u0 and e�� � e� � 1

s

�

��
u0� (8)

which span the plane tangent to �. These vectors are, in general, not perpendicular or of unit
length but, nonetheless, can be used to evaluate the unit normal in the following way:

en � e�s � e��
e�s � e��

� (9)

where  �  is the Euclidean norm.
Define F � �� �X� to be the gradient1 of the deformation X �
 � �X�. This may be

represented as

F�X� � F0 � �F (10)

where

F0 :� F�X : X3 � 0� � I� e3 � e3 ��u0 �
�

1� �q

�X3

�
en � e3 (11)
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and

�F :� F� F0 � �X3 � q�

�
�en

�s
� es � 1

s

�en

��
� e�

�
� �q

�s
en � es � 1

s

�q

��
en � e� � (12)

By the polar decomposition theorem, there exists tensors R � Orth� and V � Sym such that
F � VR. The tensor V is known as the left stretch tensor and its natural log is defined as the
spatial Hencky strain tensor EH � lnV. The strain tensor may also be expressed as

EH � 1

2
lnB (13)

where B � FF� is the left Cauchy–Green tensor [23].

2.2. Stress Tensors and Constitutive Law

For moderately large deformations, the constitutive response of a material can be accurately
characterized by a strain-energy function W �F� of the form

W � ��� I
2 � � I I

2 � � I I I
2�� 1

2
�� I � � I I � � I I I �

2 (14)

where �� i : i � I� I I� I I I � are the eigenvalues of EH and � and  are the Lamé moduli
evaluated at small strains [21, 22]. Hencky’s constitutive equation is given by

si � �W

�� i

� 2�� i � �� I � � I I � � I I I � (15)

where �si� are the principal components (eigenvalues) of the Kirchhoff stress tensor S. For
plane stress problems, (14) reduces to

W � 2�

� 2�

�
� t� l � �� ���� 2

t � � 2
l �
�

(16)

where � t and � l are the principal strains on the tangent plane and

� n � �


� 2�
�� t � � l� (17)

is the principal strain normal to �.
In tensorial form,

S � 2�EH � �trEH �1 (18)

where 1 is the unit tensor [21]. Inverting2 (18) yields
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8 C. MAJIDI ET AL.

EH � 1

2�

�
S� 

2�� 3
�trS�1

�
� (19)

which implies

� i �
1

2�
si � 

�2���2�� 3�
�sI � sI I � sI I I �� (20)

Similarly, the strain energy function can be expressed as

W � W �F� � 1

2
S � EH (21)

� �W �EH � � � tr
	
E2

H


� 1

2
 �trEH �

2 (22)

� �W �S� � 1

4�
tr
	
S2

� 

�4���2�� 3�
�trS�2 � (23)

Another stress tensor that will be relevant to analysis is the Piola tensor P � F�1S. Let
��i : i � I� I I� I I I � denote the eigenvalues of PP�. Then, the principal components of P
are ti � ��i , which are known as the Biot stresses. For plane stress,

� t � 1

2�
tt � 

�2���2�� 3�
�tt � tl� (24)

� l � 1

2�
tl � 

�2���2�� 3�
�tt � tl�� (25)

2.3. Membrane Approximation

For the applications presented in Sections 3 and 4, we consider a membrane of thickness H .
For simplicity, it is assumed that H is vanishingly small. Thus, the deformation tensor is
approximated by Fm , which is defined as

Fm :� lim
H
0

F (26)

for all points in the membrane. Noting that �X3� � 2H and H 
 0, it follows from (7) that

Fm � F0 � I� e3 � e3 ��u0 �
�

1� �q

�X3

�
en � e3� (27)

Based on this assumption of an infinitesimally thin membrane, the Hencky strain tensor
becomes
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Em � 1

2
ln
	
FmF�m



� (28)

Henceforth, Fm and Em will be used in place of the deformation gradient and Hencky strain
tensors, respectively.

2.4. Variational Principles

For a prescribed shaft configuration � and delamination zone �0, the total potential energy
of the system is [14]

U ��� �
�
�0

W H dA �
�
���0

� �� H dS� (29)

where ���0 denotes the part of the boundary where traction is prescribed and � � PT N on
���0 . It should be noted that the work of adhesion (or surface energy) is not included in the
potential energy, but will be introduced later. The dual to the potential is the complementary
energy:

��P� �
�
��x

0

�PT N� � � H dS �
�
�0

Wc H dA� (30)

where ��x
0 is the part of ��0 where position is prescribed, N is the unit outward normal to

��x
0 lying in the tangent plane to �0, � is the prescribed position of points on ��x

0, and

Wc � P � F�W (31)

is the complementary energy density [17]. Assuming plane stress, Wc reduces to [14]

Wc � e� t tt � e� l tl �W� (32)

where e� t and e� l are the principal stretches associated with eigenvalues of the Hencky strain
tensors.

Let � denote the space of all geometrically admissable deformation fields and define

� :� �P : Div P � 0� PT N � � on ���0 � (33)

where Div is the divergence operation with respect to X. At equilibrium, the potential energy
is computed as

U � � min
���

U��� � max
P��

��P�� (34)

To obtain an analytic solution, it may be convenient to study only a restricted class of defor-
mation and stress fields, denoted by �0 � � and �0 � � , respectively. Extremizing over
these restricted spaces will yield upper and lower bounds on U �, respectively:
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10 C. MAJIDI ET AL.

min
���0

U��� � U � � max
P��0

��P�� (35)

Next, let Ws denote the work required to create new surface via delamination and define
the total energy of the system as E � U �Ws . The work Ws may be expressed as

Ws �
�
�0

Wad dA� (36)

where Wad is the work of adhesion per unit area. By the Griffith energy balance, E is
stationary with respect to variations of the form

� �
 �� � � � ��� (37)

where �� � ����� is an arbitrarily small but kinematically admissible perturbation of the
field ����.

3. APPLICATION TO NORMAL PULL-OFF

Suppose that the shaft is pulled from the substrate through a distance � such that

x � 	es ��e3 (38)

for points on ��. The deformation response is assumed to be axisymmetric, and so

u0 � us�s�es � u3�s�e3� (39)

Following from (8) and (9),

en � 1�
�1� us�s�2 � u2

3�s

��u3�ses � �1� us�s�e3�� (40)

where ux�y � �ux��y. Substituting these into the deformation gradient tensor (27) and
then performing an eigen decomposition on the Hencky strain tensor (28) for points on the
midplane yields

Em � � t et � et � � lel � el � � nen � en (41)

where el � e� , et � el � en, and

� t �
1

2
ln
�
u2

3�s � �1� us�s�
2
�
� � l � ln


1� us

s

�
� � n � ln

�
1� �q

�X3

�
� (42)
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3.1. General Solution at Equilibrium

The displacements us � us�s� and u3 � u3�s� are determined by extremizing the potential
energy functional. Since there is no part of the boundary where the traction is prescribed,
���0 � �. Hence, substituting (16) into (29),

U �
� �

	

2
s H

�
2�

� 2�

�
� t� l � �� ���� 2

t � � 2
l �
��

ds� (43)

Next, substituting in the eigenvalues (42) yields a functional of the form

U�us� u3� �� �
� �

	

f �s� us�s�� us�s�s�� u3�s�� u3�s�s�� ds� (44)

As a result of assuming an infinitesimally thin membrane, the function q only arises in � n

and thus does not enter into the strain energy for plane stress problems.
The Euler–Lagrange differential equations for the functional (44) are

� f

�us
� �

�s

�
� f

�us�s

�
� 0 and

� f

�u3
� �

�s

�
� f

�u3�s

�
� 0� (45)

After some manipulation, the combined differential equations furnish two second-order
ordinary differential equations

us�ss � gs�s� us� us�s� u3� u3�s� � 0 and u3�ss � g3�s� us� us�s� u3� u3�s� � 0� (46)

where

gs � �
2
�
2� 2

l � 2� t�� ����� 2� t�� ���� � l��� 4� t�� ���
�

us

� �1� us�s�� s
�	

4� 2
l �� ��� 2� t��2� 2� t��� ��� � l��8�� ��2

� 2� t�5
2 � 8�� 4�2��



u2

3�s � �� l� 2� t�� ����1� us�s�

� 	
�2� l � 2� t��� 2��� ���22� t�� 4� l�� ���us�s


��
�

�
2s
	
� 2

l 
2 � 2� l��1� 2� t��� ��� 2� t��2� 2� t��� ��2



�s � us�

�
and

g3 � �
u3�s

�	
2� 2

l � 2� t�� ����� 2� t�� ���� � l��� 4� t�� ���



us

� s
	�� 2

l �3� 4��� 2� t�� ���� 2� t��� � l�4�� ��2
� 2� t�3

2 � 6�� 4�2��� �4� 2
l �� ��� 2� t��2� 2� t��� ��

� � l��1� 2� t��5
2 � 8�� 4�2��us�s


�� ��
s
	
� 2

l 
2 � 2� l��1� 2� t�

� �� ��� 2� t��2� 2� t��� ��2


�s � us�

�
�
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12 C. MAJIDI ET AL.

Figure 3. Profile of membrane for non-dimensional work of adhesion Wad�E	 � 10�5 and various shaft
heights.

3.2. Boundary Conditions

The membrane is subject to the boundary conditions

us�	� � us��� � u3��� � 0 and u3�	� � �� (47)

These four boundary conditions are used to solve for the four constants of integration derived
from (46). The remaining unknown is the radius � of the delaminated zone. From the Griffith
energy balance, it follows that dU�d� � �dWs�d� , where Ws is the work required to create
new surface. Following from (36), Ws is given by

Ws � �
�2 � 
	2�Wad � (48)

The energy release rate dU�d� is determined with the aid of Leibniz’ rule:

dU

d�
� f ����

� �

	

�
� f

�us

�us

��
� � f

�us�s

�us�s

��
� � f

�u3

�u3

��
� � f

�u3�s

�u3�s

��

�
ds� (49)

For stationary functions us and u3 satisfying (45), the integrand is the derivative of [25]

� f

�us�s

�us

��
� � f

�u3�s

�u3

��
(50)

and so
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Figure 4. Non-dimensional normal load versus normalized shaft height for non-dimensional work of
adhesion Wad�E	 � 10�5.

dU

d�
� f ����

�
� f

�us�s

�us

��
� � f

�u3�s

�u3

��

��
	

� (51)

Noting that ��us����	 � ��u3����	 � 0, ��us����� � �us�s��� and ��u3����� � �u3�s���,
the energy release rate reduces to

dU

d�
� f ����

�
� f

�us�s

�
s��

us�s����
�
� f

�u3�s

�
s��

u3�s���� (52)

Thus, the Griffith energy balance yields an additional boundary condition

f ����
�
� f

�us�s

�
s��

us�s����
�
� f

�u3�s

�
s��

u3�s��� � �2
�Wad� (53)

which may be used to solve for � . This boundary condition is related to the second
Weierstrass–Erdmann corner condition as well as the material (configurational) force bal-
ance at the edge of a delamination zone.

4. SHAFT ROTATION

Now consider a rotation �e2 about the pivot point p � 	e1, as shown in Figure 5. Hence,
for � � [0� 2
],
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Figure 5. Delamination of membrane under shaft rotation of � � 0�05 radians� non-dimensional work of
adhesion Wad�E	 � 10�5.

x � 	es � 	�1� cos ���1� cos��e1 � 	�1� cos �� sin�e3 (54)

on ��.
For this system, � is not axisymmetric and the task of determining the deformation

at equilibrium is far more difficult than for the previous, axisymmetric system. Instead,
approximate upper and lower bounds are obtained by employing the principles of minimum
potential and maximum complementary energy, respectively.

4.1. Upper Bound

To obtain an approximate expression for the potential energy it is assumed that

u0�s� �� � u1�s� ��e1 � u3�s� ��e3 (55)

with

u1�s� �� � 	�1� cos ���1� cos��
� � s

� � 	
u3�s� �� � 	�1� cos �� sin�

� � s

� � 	 �

Noting that e1 � cos �es � sin �e� , u0 may be expressed as

u0�s� �� � u1 cos �es � u1 sin �e� � u3e3� (56)

This implies that � is a ruled surface with directrix �B. To demonstrate this, consider any
line along es that is fixed to �0. Following from the linearity of u1 and u3, such a line maps
to a ruling on �.

Based on the constitutive law and plane stress condition, it should be possible to de-
rive q corresponding to the deformation associated with (55). However, for demonstration
purposes, it is convenient to prescribe q � 0. This additional restricion on � , though kine-
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Figure 6. Plot of delamination zone for non-dimensional work of adhesion Wad�E	 � 10�5 and various
angles of rotation.

Figure 7. Plot of energy versus angle of rotation for non-dimensional work of adhesion Wad�E	 � 10�5.

 at PRINCETON UNIV LIBRARY on December 1, 2008 http://mms.sagepub.comDownloaded from 

http://mms.sagepub.com


16 C. MAJIDI ET AL.

Figure 8. Plot of non-dimensional moment M�E	3 versus angle of rotation for non-dimensional work of
adhesion Wad�E	 � 10�5.

matically admissible, conflicts with the solution for plane stress and so is likely to reduce the
accuracy of the upper bound approximation.

Evaluating en from (9) and substituting u0, en, and q � 0 into (27) yields the defor-
mation gradient Fm for points on the midplane. The corresponding strain tensor Em is then
determined from (28) and substituted into (22) to determine the strain energy density, W.
Lastly, by (29),

U �
� 2


0

� ����

	

W H s ds d�� (57)

The potential can also be evaluated for small strains (but large rotations) with Green’s strain
tensor

EG � 1

2

	
F�F� I



� (58)

4.2. Lower Bound

For the construction of a lower bound, the simplifying assumption of a ruled surface is not
needed. Instead, it is assumed that the Piola stess tensor has the form

P � � ses � es � ��e� � e� � �es � e3� (59)
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The eigenvalues of PP� are � 2
s � � 2 and � 2

� . Hence, following the arguments presented in
Section 2.2, the Biot stresses are

tt �
�
� 2

s � � 2 and tl � �� � (60)

It is also convenient to let the ratio of tt to tl equal Poisson’s ratio. Hence, (60) implies

�� � 

2�� ��
�
� 2

s � � 2� (61)

As with (59), such a condition may conflict with kinematically admissible solutions to the
constitutive equations for plane stress. Thus, setting tt�tl equal to Poisson’s ratio will likely
reduce the accuracy of the lower bound approximation for U �.

At equilibrium, Div P � 0, which implies3

�� s

�s
� 1

s
�� � � � s� and

��

�s
� ��

s
� (62)

Substituting �� with (61) and solving,

� s � 1

4
C1s�

�2�
2���� � C2

2

C1
s�

3�2�
2���� and � � C2

s
� (63)

where C1 and C2 are constants of integration. These are used to evaluate the Biot stresses,
which are then substituted into (24) and (25) to obtain � t and � l , respectively. Noting that
� l � 0, the expression for strain energy reduces to

W � � 2�

8��� �� t
2
t � (64)

The complementary density is evaluated by substituting tt , tl � tt�2����, � t , � l � 0 and
W into (32), which yields Wc � �c�s � C1�C2�.

For � � [0� 2
], the prescribed vectors in (30) are N��� � es , ���� � �es N�	� � �es ,
and ��	� � � such that

��	� � 	es � 	�1� cos ���1� cos��e1 � 	�1� cos �� sin�e3� (65)

Hence, the total complementary energy is

� �
� 2


0
��� � C1�C2� H d�� (66)

where
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� � 	2�1� cos ��[���	 sin�� �� s�	�1� cos�� cos �]�
� �

	

�
d

ds

	
s2� s


� s�c

�
ds� (67)

A lower bound on the strain energy is obtained by integrating the supremum of �H over
C1 � � and C2 � � at each � � [0� 2
]:

��� �
� 2


0
max
C1�C2

�H d�� (68)

4.3. Approximate Solution at Equilibrium

The strain energy density W is approximated by (22) evaluated with Green’s strain tensor.
Integrating W Hs over s � [	� �] in (57) yields a functional of the form

U �
� 2


0
h��� ����� d�� (69)

where

h � �
H 	2 ��10 �4 � 24 �4 �� 16 �3 �	 � 14 �2 	2 � 4 �2 �	2 � 16 � �	3

� 4 	4 � 12�	4 � 3 �4  cos�3 ��� 6 �4 � cos�3 ��� 3 �2  	2 cos�3 ��

� 6 �2 �	2 cos�3 ��� 4 �4  ln���� 12 �4 � ln���� 16 �3 	 ln���

� 24 �3 �	 ln���� 12 �2  	2 ln���� 28 �2 �	2 ln���� 2 �4  cos�3 �� ln���

� 2 �4 � cos�3 �� ln���� 4 �3  	 cos�3 �� ln���� 12 �3 �	 cos�3 �� ln���

� 2 �2  	2 cos�3 �� ln���� 2 �2 �	2 cos�3 �� ln���� 4 �4  ln�	�� 12 �4 � ln�	�

� 16 �3  	 ln�	�� 24 �3 �	 ln�	�� 12 �2 	2 ln�	�� 28 �2 �	2 log�	�

� 2 �4  cos�3 �� log�	�� 2 �4 � cos�3 �� ln�	�� 4 �3 	 cos�3 �� ln�	�

� 12 �3 �	 cos�3 �� ln�	�� 2 �2 	2 cos�3 �� ln�	�� 2 �2 �	2 cos�3 �� ln�	�

� cos��� ����� � 	� ��3 �7� 26��� �2 �15 � 2�� 	 � 4 � �3 � 11�� 	2

� 4 �� �� 	3��� 2 �2 ��2 �� 5��� 2 � �� �� 	 � �� 5�� 	2� ln���

� 2 �2 ��2 �� 5��� 2 � �� �� 	 � �� 5�� 	2� ln�	��

� 2 � cos�2 �� ����� � 	� ��2 �7� 10��� � �11� 30�� 	 � 4 �� �� 	2��

� 2 � ��2 �� ��� 2 � �2� 5�� 	 � �3 � 5�� 	2� log���� 2 � ��2 �� ��
� 2 � �2� 5�� 	 � �3� 5�� 	2� ln�	��� sin���2�2 sin���2�4

���
2 �� � 	�4� �
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The work required to create new surface is given by

Ws �
� 2


0

� ����

	

Wad s ds d�� (70)

Thus, the total energy of the system is

E � U �Ws �
� 2


0

�
h � �

2 � 	2

2
Wad

�
d�� (71)

By the Griffith energy balance, E is stationary at equilibrium. Hence the integrand of E
satisfies the Euler–Lagrange differential equation, which implies

�h

��
� �Wad � 0� (72)

Substituting the expression for h, (72) may be expressed as

0 � �Wad�� � 	�5 � H	2�2�4� 6�4�� 26�3	 � 46�3�	 � 16�2	2

� 26�2�	2 � 20�	3 � 42��	3 � 8	4 � 16�	4 � �4 cos�3��

� �4� cos�3��� 7�3	 cos�3��� 17�3�	 cos�3��� 4�2	2 cos�3��

� 11�2�	2 cos�3��� 4�	3 cos�3��� 7��	3 cos�3��� 16�3	 ln���

� 36�3�	 ln���� 36�2	2 ln���� 64�2�	2 ln���� 12�	3 ln���

� 28��	3 ln���� 6�3	 cos�3�� ln���� 10�3�	 cos�3�� ln���

� 8�2	2 cos�3�� ln���� 20�2�	2 cos�3�� ln���� 2�	3 cos�3�� ln���

� 2��	3 cos�3�� ln���� 16�3	 ln�	�� 36�3�	 ln�	�� 36�2	2 ln�	�

� 64�2�	2 ln�	�� 12�	3 ln�	�� 28��	3 ln�	�� 6�3	 cos�3�� ln�	�

� 10�3�	 cos�3�� ln�	�� 8�2	2 cos�3�� ln�	�� 20�2�	2 cos�3�� ln�	�

� 2�	3 cos�3�� ln�	�� 2��	3 cos�3�� ln�	�� cos������ � 	���3�� 5��

� ��28� 51��	2 � 4�3� 7��	3 � �2�20	 � 38�	��

� 2�	�3�2�� 3��� 2��2� ��	 � �� 5��	2� ln���

� 2�	�3�2�� 3��� 2��2� ��	 � �� 5��	2� ln�	��

� 2 cos�2����� � 	���3�� ��� 20�2�� 2��	 � 3��6� 13��	2

� 2�� ��	3�� 2�	��2�4� 7��� ��9� 20��	 � �3� 5��	2� ln���

� 2�	��2�4� 7��� ��9� 20��	 � �3� 5��	2� ln�	���sin���2�2sin���2�4�
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Solving (72) yields the approximate shape ��� � ������ of the delamination zone at
equilibrium. Substituting this solution into (55) leads to the deformed configuration of the
membrane for a prescribed angle of rotation, � . The corresponding strain energy is

U �� �
� 2


0
h��� ������� d�� (73)

Following the arguments in Section 2.4, U �� is an upper bound approximation of the strain
energy U � at equilibrium.

5. NUMERICAL RESULTS AND DISCUSSION

The boundary value problem formed by the differential equations (46) and boundary con-
ditions (47) are solved in Matlab 7.0 (The Mathworks, Inc. 2004) using a finite difference
method. The initial guess for functions us�s� and u3�s� are

�us�init � 0 and �u3�init � �� � s

� � p
� (74)

Figure 3 is a side-view (not to scale) of the membrane for Wad�E	 � 10�5, where E �
�3� � 2�2��� � �� is the elastic modulus, H�	 � 0�01, and Poisson’s ratio �2� �
�� � 0�4. The difference between the shaft and delamination zone radii is observed to
increase nearly linearly with shaft height. The load necessary to achieve a prescribed height
is obtained by evaluating

P � dU

d�
(75)

(see Figure 4).
Numerical results for the case of shaft rotation are presented in Figures 6–8. Again,

Wad�E	 � 10�5, H�	 � 0�01, and �2� � �� � 0�4. An algebraic expression for (72)
is obtained with the aid of Mathematica 4 (Wolfram Research, Inc. 2000) and is solved for
� � ���� by using a scalar root finder in Matlab (see Figure 6). Equation (72) is derived
from Green’s strain tensor (58), which is a small strain approximation of the Hencky strain
(13). For the geometries considered here, both strain tensors yield similar upper bounds
for the elastic strain energies, as demonstrated in Figure 7. Hencky strain is also used to
approximate the maximum complementary energy, which furnishes a lower bound on the
elastic energy. The tightness of these bounds indicate the accuracy of the solution for ����.
Evaluating the derivative of the energy approximations with respect to � yields the moment
necessary to achieve a prescribed angle of rotation, i.e.

M � dU

d�
(76)

(see Figure 8).
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6. CONCLUSION

The numerical results indicate that a pure membrane adhering to a flat resists both normal
forces and moment when loaded at its center. Moreover, for the geometries considered here
the resistance to delamination increases with the size of the delamination zone.

In closing, the current analysis demonstrates how stationary principles can be used to
obtain bounds on an otherwise difficult membrane delamination problem, allowing for an
analytic approximation with known accuracy. Future work will focus on the design of a
bio-inspired dry adhesive that incorporates the spatular shape presented here. Predictions for
resistance to normal and moment loads can be compared with other spatular shapes, such as
those presented in [7].

NOTES

1. Computed as F � � � �, where � � es
�
�s � e� 1

s
�
��
� e3

�
�X3

[23].

2. Performed by taking the trace of both sides, substituting the solution for trE back into (18) and then
solving for E.

3. Computed as Div P � � � P.
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