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a b s t r a c t

Using variational methods, we establish conditions for the nonlinear stability of

adhesive states between an elastica and a rigid halfspace. The treatment produces

coupled criteria for adhesion and buckling instabilities by exploiting classical techni-

ques from Legendre and Jacobi. Three examples that arise in a broad range of

engineered systems, from microelectronics to biologically inspired fiber array adhesion,

are used to illuminate the stability criteria. The first example illustrates buckling

instabilities in adhered rods, while the second shows the instability of a peeling process

and the third illustrates the stability of a shear-induced adhesion. The latter examples

can also be used to explain how microfiber array adhesives can be activated by shearing

and deactivated by peeling. The nonlinear stability criteria developed in this paper are

also compared to other treatments.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The emergence of soft, miniaturized, and biologically inspired systems has led to particular interest in the dry adhesion
of elastic rods. Relevant studies have examined the role of rod adhesion in microelectronic switches (Adams and McGreur,
2010), MEMS stiction (de Boer and Michalske, 1999), soft lithography stamp printing (Hui et al., 2002), muscle
crossbridges (Stewart et al., 1987), nanotubes (Glassmaker and Hui, 2004), and gecko-inspired microfiber array adhesives
(Majidi, 2009). These works are also related to extensive body of work on peeling problems (see Burridge and Keller, 1978;
Plaut et al., 2001a,b; Podio-Guidugli, 2005, and references therein).

In the works on dry adhesion of rods, the conditions for static equilibrium are commonly derived from the stationarity
of an energy functional that is composed of elastic bending energy and the work of adhesion. The purpose of the present
paper is to develop stability and instability criteria for these equilibrium configurations. Of particular interest are the
stability properties of shear-induced adhesion and a peeling process. These two examples are relevant to microfiber
adhesive arrays. The stability of one of these examples can be exploited to promote adhesion while the instability can be
used to deactivate the adhesion.

A prototypical problem featured in rod theory-based models for systems with adhesion is shown in Fig. 1. A rod of
length ‘ is subject to a terminal load P and has a portion of length g bonded to a surface. The equilibrium conditions for the
rod dictate that the length g depends on the components of P, the geometric and material properties of the rod, and the
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adhesion energy o. Dating to the seminal work by Kendall (1971), variational principles can be used to show that the
equilibrium configuration of the rod is such that the potential energy P is extremized with respect to changes in
g : dP=dg¼ 0. Some authors, e.g., de Boer and Michalske (1999) and Mastrangelo and Hsu (1993), also examine the second
derivative d2P=dg2 and postulate minimization of P as a function of g as a stability criterion.

We concentrate our attention on Euler’s theory of the elastica as this is the predominant rod theory featured in the
literature on dry adhesion of rods. The criteria are developed by exploiting classical investigations of the second variation
by Legendre and Jacobi.1 Our work is intimately related to the extension of these classical works to develop stability
criteria for tree-like structures composed of elastic rods which was recently presented in O’Reilly and Peters (2012).
A further consequence of our treatment is the ability to relate the criteria to nonlinear treatments of buckling instabilities
in rods (which can be found in works by Born, 1906; Jin and Bao, 2008; Maddocks, 1984; Manning, 2009; O’Reilly and
Peters, 2011, 2012 and many others).

An outline of this paper is as follows: In Section 2, the relevant background material on adhesion and the elastic rod
theory are introduced, and in Section 3 it is used to formulate a variational principle for the problem of an elastica which is
in contact with a rigid surface. Particular attention is also placed on compatibility conditions which must be satisfied at the
edge of the contact region. Section 4 is devoted to discussions on stability criteria. In particular, two stability criteria are
developed in Sections 4.3 and 4.4, respectively. The first criterion is a necessary condition for stability, which we denote by
N1. As in traditional treatments of buckling instabilities, the criterion N1 features the search for a bounded solution to a
Riccati equation but with two subtle, yet important, differences. First, the domain of integration for the Riccati equation
depends on the loading, adhesive strength, and geometric and material properties of the rod. Second, the solution to the
Riccati equation must also satisfy a terminal inequality in order for N1 to hold. Our work in this respect can be viewed as
an extension of the aforementioned nonlinear treatments of buckling instabilities to cases where adhesion is present.
Section 4.5 of the paper is devoted to a discussion of a stability criterion where P as a function of g is examined.

For some of the problems of interest in this paper, we were fortunate to be able to establish a sufficient condition for
stability, which we label S1, by slightly modifying a result of Gelfand and Fomin (1963). The criteria N1 and S1 are
illustrated in Section 5 by applying them to three examples that have received significant attention in the literature in the
past three decades. We also illustrate how the criteria N1 and S1 compare to stability treatments where the potential
energy is expressed as a function of the adhesion length and the system parameters. The paper closes with a discussion of
possible extensions to the criteria and open issues. The paper contains three appendices which are devoted to a proof of
the criterion N1 and the establishment of explicit solutions for the deformed shape of the rod using elliptic functions.2

2. Background on adhesion energy and the elastica

The elastica is the simplest nonlinear theory of a deformable rod. Here we are interested in using this theory to model
the adhesion of a rod-like body to a surface. We assemble all the background in this section that is required to formulate
variational principles for the problems of interest and to examine the stability of the resulting equilibrium configurations.

2.1. Kinematics

When using Euler’s theory of the elastica, the centerline C of the rod is modeled as an inextensible material curve
which is free to move on a plane. This curve is assumed to be subject to external forces and moments and have a
resistance to bending proportional to its curvature. As shown in Fig. 2, the material points of C are identified using a
convected coordinate x and the position vector of a material point in the present configuration of the elastica is defined by

ξ =ξ = 0ξ

E1

E2

γγ

Elastic rod

P

Flat surface Adhesive layer

Fig. 1. Schematic of a rod of length ‘ a portion of which is glued to a horizontal surface.

1 The relevant background on the variational calculus used in the present paper can be found in the texts of Bolza (1904), Ewing (1969), and Gelfand

and Fomin (1963).
2 Relevant background on the use of elliptic functions to solve the deformed shapes of the elastica subject to various terminal loadings can be found

in Frisch-Fay (1962) and Love (1944).
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the vector-valued function r¼ rðxÞ. The mass density per unit length of C is denoted r0. A fixed Cartesian basis fE1,E2,E3g

and a fixed origin O are defined so that r¼ xE1þyE2.
The unit tangent vector @r=@x to C can be used to define an angle y

r0 ¼ cosðyÞE1þsinðyÞE2, ð1Þ

where the prime is used to denote the partial derivative with respect to x. The unsigned curvature k of C is identified with
y0. Both r and y are assumed to be continuous functions of x.

For the problems of interest in this paper we will expect to find points x¼ z where the fields associated with the
elastica experience discontinuities. These discontinuities can be induced by the application of point (or concentrated)
loads Fz and point moments Mz relative to a point on the centerline, discontinuities in the slope y0, or the presence of a
material force Bz induced by an adhesion energy (see Fig. 3). To help formulate such problems, we now define the
following limits for any function w¼ wðx,y,y0Þ:

wðz�Þ ¼ lim
xsz

wðx,yðxÞ,y0ðxÞÞ, wðzþ Þ ¼ lim
xrz

wðx,yðxÞ,y0ðxÞÞ: ð2Þ

The jump in the function w can be represented as

1wUz ¼ wðz
þ
Þ�wðz�Þ: ð3Þ

As a consequence of the continuity of r and y, 1r0Ux ¼ 0.

2.2. Strain energy, kinetics, and adhesion energy

Associated with the elastica are the assigned force per unit length r0f and assigned moment per unit length ma. In
addition, one has the contact force n¼ n1E1þn2E2 and bending moment m¼mE3. The moment and the strain energy
function r0f per unit length of C have the celebrated constitutive equations

m¼Dy0E3, r0f¼
D

2
ðy0Þ2, ð4Þ

Fig. 2. Schematic of an elastica which is subject to a terminal force F0 and terminal moment M0 at x¼ 0 and a terminal force F‘ and terminal moment M‘

at the end x¼ ‘.

Fig. 3. Schematic of the singular supplies of linear momentum F, angular momentum M and material force B acting on the rod shown in Fig. 1.

A subscript on these quantities is used to denote the material point at which they are applied: e.g., Bg and M‘ .
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where D is the flexural rigidity. We supplement the fields n and m with the material contact force C

C¼ r0f�n � r0�m � y0E3, ð5Þ

and the assigned material force b.
We will consider problems where a segment of the rod will be in contact with a substrate. To model these cases, we

define an energy of adhesion o per unit length of contact between a straight rod and a flat rigid substrate. Physically, o is
the external mechanical work required to separate the rod from equilibrium contact to infinite separation from the
substrate. During the separation process, external work is aided by elastic restoring forces and resisted by the interfacial
forces. We follow classical treatments (see Israelachvili, 1992; Kendall, 1971) in assuming that o vanishes when the rod is
separated from the substrate, even when the separation is infinitesimally small. For the cases of interest in this paper, the
rod has a flat, ribbon-like cross-section and o can be simply defined as the product of the cross-sectional width and the
work of adhesion.

2.3. Balance laws and jump conditions

The local form of the static balance laws for the elastica are the balance of material momentum, balance of linear
momentum, and balance of moment of momentum

C0 þb¼ 0, n0 þr0f ¼ 0, m0 þmaþr0 � n¼ 0: ð6Þ

As discussed in O’Reilly (2007), the force b is prescribed such that the local balance of material momentum (6)1 is
identically satisfied.

At a point x¼ z where a kinematic discontinuity is present or a singularity in the applied fields Mz, Fz, or Bz occurs, we
have the following jump conditions:

1nUzþFz ¼ 0, 1CUzþBz ¼ 0, 1mUzþMz ¼ 0: ð7Þ

The conditions are also helpful in establishing boundary conditions. For example, for the situation shown in Fig. 2, we can
use (7)1,3 to infer that nð0þ Þ ¼�F0 and mð‘�Þ ¼M‘. In addition, (7)2 can be shown to be equivalent to an adhesion
boundary condition with Bg ¼�o.3

3. Formulation of the problem of an elastica in contact with a rigid surface

In the applications considered in this paper we assume that the assigned force r0f ¼ 0 and the assigned moment
ma ¼ 0. It follows that the local balance laws (6) simplify dramatically to the statements that the force n and moment
mþr� n are piecewise constant throughout segments of the elastica.

For a rod which is in contact with a rigid substrate, the total potential energy of the rod will be composed of the
potential energy of terminal forces and moments, the integral of the strain energy per unit length, and the adhesion energy
per unit length �o. It is convenient to decompose the potential energy into the sum of the elastic potential energy in the
non-contacting and contacting sections. Modulo an additive constant, the resulting expression for the total potential
energy P is

P¼
Z ‘

g

D

2
ðy0Þ2�n � r0

� �
dxþ

Z g

0
f�n � E1�ogdx: ð8Þ

In writing (8), we noted that in the contact regions, r0 ¼ E1 and y¼ 0.
It is evident that the adhesion energy o is subtracted from the last term in (8). This is because o is defined as the work

of the adhesive and elastic restoring forces during interfacial detachment. Alternatively, the adhesion may be represented
as a surface potential by also adding o‘ to P. This is accomplished by eliminating o in the second integrand and adding it
to the first integrand.

3.1. Variations and compatibility conditions

In the sequel, the behavior of the functional (8) with respect to variations in y and g will be computed

y¼ yðx,EÞ ¼ yn
ðxÞþEZðxÞ, g¼ gðEÞ ¼ gnþEm: ð9Þ

That is, the respective variations in y and g are

dy¼ EZ, dg¼ Em: ð10Þ

3 For further details on this boundary condition and its relation to material momentum, we refer the reader to Majidi (2007) and O’Reilly (2007). In

O’Reilly’s paper, o¼Wad.
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In order to avoid confusion where it may arise, an asterisk is often used to denote the equilibrium solution. In the contact
region, yn

¼ y¼ 0, and so

ZðxÞ ¼ 0 8x 2 ½0,gÞ: ð11Þ

We need to establish a set of compatibility equations for the first and second derivatives of yðx¼ gnþEm,EÞ with respect
to E evaluated at E¼ 0. The desired set of compatibility conditions are obtained by taking the first and second derivatives of
(9)1 with respect to E and then setting E-0

1myn0

þZUg ¼ 0, 1m2yn00

þ2mZ0Ug ¼ 0: ð12Þ

Compatibility conditions of the form (12) can be found in Majidi and Wan (2010), O’Reilly and Peters (2012), and Seifert
(1991). They express the restrictions that variations in yðg7 Þ and g are not always independent.

3.2. Static balance laws

By considering variations of the form (10)1 and keeping g fixed, we find that the equation dP=dE9E ¼ 0 ¼ 0 leads to the
balance equation

Dyn00

¼ P1, ð13Þ

and, in the event that yn
ð‘Þ is not prescribed, the natural boundary condition

yn0

ð‘Þ ¼ 0: ð14Þ

In the balance law (13),

P1 ¼ n � ðsinðyn
ÞE1�cosðyn

ÞE2Þ: ð15Þ

As anticipated, these results are consistent with the developments in Section 2.3.

3.3. Adhesion boundary conditions

The natural boundary condition at the edge of the region of adhesive contact is obtained by applying the variations (10).
After differentiating the expression for the functional P with respect to E, using the Leibniz rule, taking the limit E-0,
using (13) and (14), and then setting the resulting expression to 0, we find that

D

2
ðyn0

Þ
2
�n � r0

� �� �
g
�o

 !
m¼ 0: ð16Þ

The condition (16) must hold for all m. Whence we find the adhesion boundary condition4

D

2
ðyn0

Þ
2
�n � r0

� �� �
g
¼o: ð17Þ

This boundary condition can be further simplified by noting that 1r0Ug ¼ 0. Thus, we can use (7)2 to write

D

2
ðyn0

Þ
2

� �� �
g
þFg � E1 ¼o: ð18Þ

In the absence of shear adhesion (i.e., Fg is normal to the surface and so Fg � E1 ¼ 0) or when the shear traction is distributed
along the interface, the boundary condition (18) is the same natural boundary condition previously derived in Seifert
(1991) and Majidi (2007) and corresponds to the jump in material momentum (7)2 with Bg ¼�o.

In addition to a force Fg and material force Bg at the edge of the region of adhesive contact, a moment Mg can also be
present. This moment is computed from (7)3

Mg ¼Dyn0

ðg�ÞE3�Dyn0

ðgþ ÞE3: ð19Þ

An example of Mg can be seen in Fig. 3. We also note that the moment Mg is identical to the adhesion moment discussed in
Pamp and Adams (2007).

3.4. Remarks

Clearly, the necessary conditions for the vanishing of the first variation of P are the local balance laws and jump
conditions discussed in Section 2.3. When specialized to the loading conditions presented in Fig. 1, these governing
equations reduce to the balance law (13), natural boundary condition (14), and adhesion-controlled jump condition (18).
The variational formulation naturally leads us to examine the second variation in order to establish necessary conditions

4 If the rod were extensible, then 1n � r0Ug would be due to the jump in the stretch of the centerline across the discontinuity. For examples where this

situation arises, see Kendall (1971) and Majidi and Adams (2010).
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for stability of the elastica. In the following section, we employ the variations (9) and compatibility conditions (12) along
with classical transformations by Legendre and Jacobi to simultaneously address adhesion and buckling instabilities.

4. Conditions for stability from the second variation

Necessary conditions for the functional P to be minimized includes the vanishing of the first variation and the non-
negativity of the second variation. We now explore these conditions and use them to establish a necessary condition,
which we label N1, for stability. For some cases, we are able to establish a sufficient condition, which is referred to as S1,
for stability. This section of the paper concludes with a discussion of an alternative criterion for stability which is based on
computing P as a function of g. All three stability criteria will be illuminated by examples in Section 5.

4.1. A representation for the second variation

To establish an expression for the second variation of the potential energy P, we again consider variations of the form
(9) and evaluate d2P=dE29E ¼ 0. After some rearranging we find that the second variation has a simple additive
decomposition

d2P
dE2

�����
E ¼ 0

¼

Z ‘

g
ðDZ0Z0 þPZ2Þ dx�21Dyn0Z0 þP1ZUgm�1Dyn00yn0

þP1y
n0Ugm

2, ð20Þ

where

P¼ n � ðcosðyn
ÞE1þsinðyn

ÞE2Þ: ð21Þ

To simplify (20), we can use (12)

0¼ myn0

ðgþ ÞþZðgþ Þ, 0¼ myn00

ðgþ Þþ2Z0ðgþ Þ, ð22Þ

where we have used the fact that, because y is prescribed in the contact region, Zðg�Þ ¼ 0. In addition, we also appeal to the
balance law (13) to eliminate Dyn00 from (20)

J¼
d2P
dE2

�����
E ¼ 0

¼

Z ‘

g
ðDZ0Z0 þPZ2Þ dxþP1y

n0

ðgþ Þm2: ð23Þ

We now follow Legendre and add the following term to (23)Z ‘

g

d

dx
ðZ2wÞ dx�½Z2w�‘g ¼ 0: ð24Þ

Manipulating the resulting expression for J in a standard manner, we see that provided a solution wðxÞ to the following
Riccati equation can be found:

@w

@x
þP�

w2

D
¼ 0, ð25Þ

we can then express J as

J¼

Z L

g
D Z0 þ w

D

� �
Z

n o2

dxþ J2, ð26Þ

where

J2 ¼ P1y
n0

ðgþ Þm2�Z2ð‘Þwð‘ÞþZ2ðgþ Þwðgþ Þ: ð27Þ

We will choose the initial condition wð‘Þ ¼ 0 and note that the existence of a bounded wðxÞ on the interval ½g,‘� implies that
the integral in (26) is non-negative. We now seek necessary conditions for JZ0.

4.2. Riccati and Jacobi equations

To continue, it is fruitful to employ a Jacobi transformation

w¼�D
u0

u
: ð28Þ

As is well-known, this transformation produces a Jacobi differential equation for uðxÞ from (25)

Du00�Pu¼ 0: ð29Þ

We consider solutions uðxÞ8x 2 ½g,‘� to (29) which satisfy the initial conditions

uð‘Þ ¼ 1, u0ð‘Þ ¼ 0: ð30Þ

C. Majidi et al. / J. Mech. Phys. Solids 60 (2012) 827–843832
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Note that this initial condition is equivalent to wð‘Þ ¼ 0. If the solution uðxcÞ ¼ 0 for some xc , then the point xc is said to be
conjugate to x¼ ‘.5

To relate unbounded solutions of the Riccati equation to conjugate points, we recall a theorem from Reid (1972):
bounded solutions to the Riccati equation (25) for wðxÞ on a given interval exist if, and only if, a solution uðxÞ for the
corresponding Jacobi differential equation (29) exists on the same interval with uðxÞa0 and w given by (28). Thus, at a
conjugate point, the solution to the Riccati equation becomes unbounded: limx-xc

9wðxÞ9¼1 (see Fig. 4). On the other
hand, the existence of a bounded solution wðxÞ8x 2 ½g,‘� is equivalent to the non-existence of conjugate points to x¼ ‘ in
the interval ½g,‘� for the solution uðxÞ to (29).

4.3. The condition N1

We have now compiled all the needed background to state the necessary condition for stability N1. Part of this criterion
pertains to the buckling instability of the rod. The second part of the criterion is intimately related to the kinematics at the
adhesion point x¼ g. The proof of the criterion is discussed in Appendix A.

Condition N1. If a solution fyn
ðxÞ,gng to the boundary-value problem minimizes P then the solution wðxÞ8x 2 ðgn,‘� to the

boundary-value problem

@w

@x
þP�

w2

D
¼ 0, wð‘Þ ¼ 0, ð31Þ

cannot become unbounded in the interval ½g,‘� and the following inequality must be satisfied:

yn0

ðgþ Þðyn0

ðgþ Þwðgþ ÞþP1ÞZ0: ð32Þ

The adhesion boundary condition (18) can often be used to express yn0

ðgþ Þ in terms of o. In this instance, the condition
(32) can then be interpreted as a condition on the relative strength of the adhesive to the loading P1. On the other hand, the
existence of a solution to the Riccati equation (31) implies that the rod has not buckled. For completeness, we also note
that the criterion N1 is the counterpart of the criteria L1 and B3 that were developed for tree-like structures composed of
elastic rods in O’Reilly and Peters (2012).

4.4. The condition S1

For many applications of the stability criterion, yn0

ðgþ Þ ¼ 0. In this case, we can strengthen the condition N1 to yield a
sufficient condition, which we denote by S1, for stability. To elaborate, when yn0

ðgþ Þ ¼ 0 the compatibility equation (12)1

implies that Zðgþ Þ ¼ 0. Hence, the boundary term J2 defined in (27) can be set to zero by choosing the initial condition

wð‘Þ ¼ 0: ð33Þ

Clearly, J is not a function of m for the case at hand. As a result, the forthcoming criterion only pertains to perturbations in
y: perturbations to g are not considered.

Referring to Theorem 3 of Section 26 in Gelfand and Fomin (1963), we can now readily establish a sufficient condition
for positive definiteness of J and, hence, a sufficient condition for stability.6 In the interests of brevity, we merely state the
criterion:

Condition S1. Consider the case yn
ðgþ Þ ¼ 0. If a solution fyn

ðxÞ,gng to the boundary-value problem is such that either

(i) a bounded solution wðxÞ8x 2 ½gn,‘� to (25) can be found where wð‘Þ ¼ 0, or

(ii) there are no points conjugate to x¼ ‘ in the interval ½gn,‘�,

then fyn
ðxÞ,gng is stable.

Clearly, the development of a stability criterion in this case is identical in all but one respect to the case of a rod fixed at
one end and subject to a terminal load P at the other.7 The distinction from this classical problem is that the length ‘�g of
the beam is typically a (nonlinear) function of P, D, and o.

5 Our definition of the conjugate point differs from the traditional definition as the latter applies to the case where both endpoints are fixed.
6 Gelfand and Fomin’s proof pertains to the fixed-fixed case. It requires some minor modifications to deal with the fixed-free case of interest here and

these modifications are outlined in Peters (2011).
7 I.e., the problem of a terminally loaded fixed-free strut.
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4.5. The potential energy as a function of g

An alternative stability criterion is often used in the literature (see, e.g., Mastrangelo and Hsu, 1993). Here, the solution
for yn is substituted into the expression for P in (8). The resulting expression for P, which we denote by Pc , depends on g.
Our examples indicate that solving dPc=dg¼ 0 for g yields gn. The stability criterion is simply that Pc has a minimum at
g¼ gn

d2Pc

dg2

�����
g ¼ gn

40 for stability,

¼ 0 inconclusive,

o0 for instability:

8><
>: ð34Þ

Our examples indicate, but have not been able to prove, that d2Pc=dg29g ¼ gn 40 is equivalent to the condition (32)
which features in the condition N1. The main hinderance in such a proof is the compatibility condition (22)1:
0¼ myn0

ðgþ ÞþZðgþ Þ. This condition states that it is generally not possible to vary g without varying yðgþ Þ: a dependency
that is easily visualized. Hence, it is not obvious that the derivative with respect to g featuring in (34) should correspond to
a variation dg.

5. Examples

The stability criteria N1 and S1 and the criterion (34) featuring Pc are illustrated using three loading conditions that
commonly arise in engineered systems. All of these examples represent special cases of the general loading condition
illustrated in Fig. 1. In the first example, yn0

ðgþ Þ ¼ 0 and so we can appeal to the necessary condition N1 to conclude
instability and the sufficiency condition S1 to draw conclusions about stability. However, for the remaining examples,
yn0

ðgþ Þ40 and so we are restricted to examining only the necessary condition N1.

5.1. A rod in friction–adhesion with a rigid flat surface

Our first example is shown in Fig. 5. Here a rod of length ‘ has a section of length g which is restrained by friction from
moving on a horizontal surface. The contact between the rod and the surface is idealized as adhesionless: o¼ 0 in this
problem. An applied force �FE1 acts at the material point x¼ ‘. Clearly, if the applied force F is too large then the
unattached section of the rod will buckle.

To analyze this problem, we first solve the balance laws with the help of the appropriate boundary conditions and find
the trivial solution

nðxÞ ¼�FE1, yn
ðxÞ ¼ 0: ð35Þ

Fig. 4. Schematic of solutions uðxÞ to a Jacobi equation (29) and the corresponding solutions wðxÞ to a Riccati equation (25). In (a) there is no conjugate

point to x¼ ‘ in the interval ½g,‘� and in (b) there is a conjugate point xc to x¼ ‘ in the interval ½g,‘� where wðxÞs1 as xrxc and wðxÞr�1 as xsxc .

Fig. 5. An axially loaded elastic rod of length ‘. A portion of the rod x 2 ½0,gÞ is stuck to the rigid plane.

C. Majidi et al. / J. Mech. Phys. Solids 60 (2012) 827–843834
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This solution is statically admissible for all values of F and all adhesion lengths g40. To examine the possibility of
buckling, we establish the appropriate single Riccati and Jacobi equations, from (25) and (29),

@w

@x
¼ Fþ

w2

D
, Du00 þFu¼ 0, x 2 ðg,‘�: ð36Þ

The boundary conditions for these differential equations are, respectively,

wð‘Þ ¼ 0, uð‘Þ ¼ 1, u0ð‘Þ ¼ 0: ð37Þ

The solutions of the pair of boundary-value problems are

uðxÞ ¼ cos

ffiffiffiffi
F

D

r
ð‘�xÞ

 !
, wðxÞ ¼

ffiffiffiffiffiffi
FD
p

tan

ffiffiffiffi
F

D

r
ð‘�xÞ

 !
: ð38Þ

The Riccati equation has a bounded solution and, equivalently, there are no conjugate points to x¼ ‘ in the interval ½g,‘Þ
provided FoFcrit

8:

Fcrit ¼
p2D

4ð‘�gÞ2
: ð39Þ

We conclude with the help of S1 that the straight configuration yn
¼ 0 is stable provided FoFcrit and unstable otherwise.

Notice that instability occurs when the rod buckles and is independent of the adhesive.
Now suppose that F4Fcrit. It follows that uðxcÞ ¼ 0 for x¼ xc . That is, x¼ xc is the conjugate point to x¼ ‘. We observe

from (38) that wðxÞs1 as xrxc as expected from our earlier discussion in Section 4.2. An example of this situation when
g¼ 0:5‘ is shown in Fig. 4(b).

We next examine the criterion (34). For the problem at hand, we substitute the solutions (35) for y and n in the
expression (8) for P to find that

Pc ¼ F‘: ð40Þ

Clearly, the derivatives of Pc with respect to g are zero. Hence, the criterion (34) is not satisfied. It is also interesting to
notice that the criterion featuring Pc is insensitive to the buckling instabilities in this problem.

5.2. Shear peeling

Next, we consider a load P¼ PE2 applied at the free end x¼ ‘ of the elastica. According to the adhesion boundary
condition (18), the elastica peels when the curvature yn0

ðgþ Þ induced by the bending moment exceeds the critical valueffiffiffiffiffiffiffiffiffiffiffiffiffi
2o=D

p
. This relates to the ‘‘moment-discontinuity method’’ introduced by Pamp and Adams (2007) to study the peeling

of elastic plates and rods.
The balance laws and boundary conditions are easily inferred from (13), (14), and (18) over the domain x 2 ðg,‘�

nðxÞ ¼ PE2, Dyn00

¼ �P cosðyn
Þ,

yn
ðgþ Þ ¼ 0, yn0

ð‘Þ ¼ 0,
D

2
ðyn0

ðgþ ÞÞ2 ¼o: ð41Þ

These equations are used to solve yn
ðxÞ and determine the contact length gn at static equilibrium. Following the derivations

in Appendix B, we evaluate the boundary-value problem (41)2–5 to obtain the following solutions for yn and gn:

yn
¼ 2amðv9mÞ�

p
2

,

gn ¼ ‘� 1ffiffiffiffiffi
m
p KðmÞ�F

p
4

���m� �� � ffiffiffiffiffiffiffiffiffiffiffiffi
2D

Pþo

r
: ð42Þ

In the first of these equations, amðv9mÞ is the Jacobi amplitude evaluated at

v¼ ðx�gnÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
Pþo

2D

r
þF

p
4

���m� �
, ð43Þ

Fð�9mÞ is the incomplete integral of the first kind, and

m¼
2P

Pþo ð44Þ

8 This is equivalent to the classical result for the buckling load of a fixed-free strut (see Section 5.2 of O’Reilly and Peters, 2011 and references

therein).
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is the elliptic parameter. The elliptic parameter is defined as m¼ k2 where k is the modulus. Also, KðmÞ ¼ Fðp=29mÞ
represents the complete elliptic integral of the first kind evaluated for the parameter m¼ 1=m (i.e., k¼

ffiffiffiffiffiffiffiffiffi
1=m

p
).9

Representative configurations of the rod for various values of P and a fixed value of o are shown in Fig. 6.
As regards the stability criterion N1, the Riccati boundary-value problem for wðxÞwhere x 2 ðg,‘� and the inequality (32)

are, respectively,

@w

@x
¼�P sinðyn

Þþ
w2

D
, wð‘Þ ¼ 0, GZ0, ð45Þ

where

G¼
2o
D

wðgþ Þ�
ffiffiffiffiffiffiffi
D

2o

r !
P

 !
: ð46Þ

In writing the inequality (45)3, we used the adhesion boundary condition yn0

ðgþ Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2o=D

p
.

5.2.1. Results

To proceed with analysis of this problem, it is convenient to introduce the dimensionless quantities

x̂ ¼
x
‘

, ŵ ¼
w‘

D
, ĝ ¼ g

‘
, P̂ ¼

P‘2

D
, ô ¼ o‘2

D
: ð47Þ

The curves in Fig. 6 represent the shape of the elastica as it is peeled from the substrate. In these calculations, the elastica
has a dimensionless energy of adhesion ô ¼ 0:5 and is subject to a range of dimensionless loads P̂ ¼ 1:1,1:3,1:5,2;10. We
observe that greater force leads to less contact. That is, a smaller moment Mg is required to maintain the boundary
condition (41)5.

Examination of the stability criterion N1 leads to the conclusion that peeling is mechanically unstable. To see this, we
first calculate ĝn

for prescribed values of P̂ and ô and then evaluate the dimensionalized form of the boundary-value
problem (41)2–4 and (45)1,2 over the domain ðĝn

,1�. Representative solutions for wðxÞ can be seen in Fig. 7. Lastly, we
substitute the solution for ŵðĝn

Þ into (45)3 and determine whether the inequality GZ0 is satisfied.
Numerical evaluations of G are performed and the results plotted in Fig. 8. Each curve terminates at a minimum value

P̂ , which corresponds to a solution of ĝn
¼ 0. From the figure it is evident that Go0 for all statically admissible

combinations of P̂ and ô. Clearly, in this case the equilibrium configuration of the rod is stable (to buckling), but, as Go0,
the adhesive is insufficient to maintain the adhesive bond. In summary, the condition N1 is not satisfied and we conclude
that peeling is unstable.

5.2.2. The stability criterion featuring Pc

We now turn to the stability criterion featuring Pc (i.e., (34)). To make the analysis more transparent we restrict
attention to the case where yn is small. Thus, we start by solving the balance law (from (41)2) Dyn00

¼ �P with the boundary

Fig. 6. Configurations of a rod where a force P¼ PE2 is applied to the free end x¼ ‘ causing it to peel from a rigid surface. For the five cases shown, the

elastica has a dimensionless energy of adhesion ô ¼o‘2=D¼ 0:5 and subject to dimensionless loadings of P̂ ¼ P‘2=D¼ 1:1,1:3,1:5,2:0,10.

9 The condition gnZ0 requires mZ1 (i.e., P̂ Zô). For numerical packages that require the elliptic parameter m to be between 0 and 1, we make use

of the identities amðv9mÞ ¼ sin�1
ð
ffiffiffiffimp snðv

ffiffiffiffiffi
m
p

9mÞÞ and Fðj9mÞ ¼
ffiffiffiffimp Fðc9mÞ, where sin c¼

ffiffiffiffiffi
m
p

sin j (Byrd and Friedman, 1971). The sine amplitude is

defined as snðv9mÞ ¼ sinðamðv9mÞÞ.

C. Majidi et al. / J. Mech. Phys. Solids 60 (2012) 827–843836



Author's personal copy

conditions yn
ðgþ Þ ¼ yn0

ð‘Þ ¼ 0

yn
¼

P

2D
ð2‘�g�xÞðx�gÞ: ð48Þ

This solution is substituted into the expression for the potential energy P in (8) and Pc is computed

Pc ¼�
P2

6D
ð‘�gÞ3�og: ð49Þ

Solving dPc=dg¼ 0 for g¼ gn yields a solution which is equivalent to (18)

gn ¼ ‘�
ffiffiffiffiffiffiffiffiffiffiffi
2oD
p

P
: ð50Þ

After taking the second derivative of Pc with respect to g we find that

d2Pc

dg2

�����
g ¼ gn

¼�P

ffiffiffiffiffiffiffi
2o
D

r
: ð51Þ

Clearly d2Pc=dg29g ¼ gn o0 when P40, and so the peeling configuration would be classified as unstable when P40. This is
in agreement with our earlier conclusions for the nonlinear boundary-value problem.

5.3. Shear adhesion of an elastic rod to a rigid flat surface

As our third, and final example, we consider the case where a rod is bonded to a substrate and subject to applied
shearing force. The system is shown schematically in Fig. 1 with P¼ VE1 and yð‘Þ ¼ p=2. Motivated by gecko-inspired
adhesives this example was also discussed recently in Majidi (2009) and relates to the shear-controlled adhesion of
vertically aligned micro- and nanofiber arrays (Lee et al., 2008; Qu et al., 2008).

Fig. 7. The normalized solution ŵ ¼w‘=D to the Riccati boundary-value problem (45)1,2 for ô ¼o‘2=D¼ 0:5 and values of P̂ ¼ P‘2=D¼ 1:1,1:3,1:5,2;10.

Fig. 8. The function G defined by (46) evaluated for prescribed values of P̂ and ô ¼ 1:0,1:5,2:0,2:5,3:0, . . . ,10. The arrow in the figure indicates increasing

values of ô and the dimensionless values G‘3=D of G are shown.
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From the balance laws (6) and jump conditions (7) we conclude that

M‘ ¼Dy0ð‘�ÞE3, nðxÞ ¼
V

x
g


 �
E1 x 2 ½0,gÞ,

VE1 x 2 ðg,‘�:

8><
>: ð52Þ

Here, M‘ is the reaction moment at x¼ ‘ which ensures that yð‘Þ ¼ p=2 and we are assuming that the applied force is
uniformly resisted by the adhesive layer (cf. Figs. 3 and 9).

The shape of the elastic rod can be determined from the following boundary-value problem

Dyn00

�V sinðyn
Þ ¼ 0,

yn
ðgþ Þ ¼ 0, yn

ð‘Þ ¼
p
2

,
D

2
ðyn0

ðgþ ÞÞ2 ¼o: ð53Þ

As with the previous peeling problem, g is a function of V and the solution to the boundary-value problem (53)2–5 is

yn
¼ p�2amðv9mÞ,

gn ¼ ‘� KðmÞ�F
p
4

���m� �n o ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D

2Vþo

r
, ð54Þ

where

v¼ KðmÞ�ðx�gnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vþo

2D

r
, ð55Þ

and

m¼
2V

2Vþo : ð56Þ

A detailed derivation is presented in Appendix C.
Paralleling the developments in Section 5.2 for the stability criterion N1, the Riccati boundary-value problem for wðxÞ

where x 2 ðg,‘� and the inequality (32) are, respectively,

@w

@x
¼�V cosðyn

Þþ
w2

D
, wð‘Þ ¼ 0, wðgþ ÞZ0: ð57Þ

The simplicity of the inequality (57)3 can be attributed to the fact that V sinðyn
ðgþ ÞÞ ¼ 0.

5.3.1. Results

The curves in Fig. 9 illustrate representative shapes of the elastica at static equilibrium. As expected, a greater shear
load leads to greater contact between the elastica and substrate. As illustrated by the results shown in Figs. 10 and 11, we
find that ŵðĝþ Þ40 where ŵ ¼w‘=D for all combinations of V̂ and ô. Therefore, the system satisfies the necessary
condition for stability. Although we cannot conclude stability, this result is consistent with experimental observations of
adhesion under shear loading for an array of vertically aligned polypropylene microfibers (Lee et al., 2008) and multi-
walled carbon nanotubes (Qu et al., 2008).

Fig. 9. Configurations of a rod whose free-end is oriented at 901 and is subject to a load P¼ VE1. For the configurations shown, the elastica has a

dimensionless energy of adhesion ô ¼o‘2=D¼ 2:0 and is subject to a range of dimensionless loads V̂ ¼ V‘2=D¼ 0;1,2;5,10 and a reaction moment

M‘ ¼Dy0ð‘�ÞE3 at x¼ ‘.

C. Majidi et al. / J. Mech. Phys. Solids 60 (2012) 827–843838



Author's personal copy

5.3.2. The stability criterion featuring Pc

We now parallel the developments in Section 5.2.2 and present an alternative stability analysis which mimics classical
treatments. For the problem at hand, we cannot restrict attention to small values of y. To proceed, we substitute the result
(54)1 for yn into the expression for the potential energy P (cf. (8)). Omitting details, we find an expression for P which we
again denote by Pc

Pc ¼Pcðg,V ,o,D,‘Þ: ð58Þ

Using the dimensionless variables (47), we can express this function as

P̂c ¼
Pc‘

D
¼ P̂cðĝ,V̂ ,ôÞ: ð59Þ

Taking the partial derivative of P̂c with respect to ĝ and setting the result to 0 we recover an equation which can be solved
for ĝn

(see (54)2). As can be seen from Fig. 12, for each value of V̂ and ô a unique minimizing ĝn
exists. As expected, this

result is consistent with the analysis based on the criterion N1.

6. Concluding remarks

Adhesion and buckling instabilities govern elastic deformation and contact between an elastica and a rigid halfspace.
We have simultaneously addressed both instability modes with a comprehensive analysis that uniquely combines
stationary principles and the calculus of variations with classical transformations by Legendre and Jacobi. In particular, we
showed that stability requires the existence of solutions to a Riccati equation which satisfy an inequality. This inequality is
intimately related to the adhesion boundary condition and supplements the usual existence result that is needed when
buckling instabilities alone are being considered. We have also shown how our treatment is an improvement to classical
treatments where the potential energy is expressed as a function of g and the system parameters.

Several open problems remain for the adhered rod problems under loading control. First, a more general sufficiency
condition for stability that does not possess the boundary limitations associated with S1 would be desirable. On a more
applied level, we note that while the peeling solution is unstable, it would be of interest to examine the stability of adhered

Fig. 10. The normalized solution ŵ ¼w‘=D to the Riccati boundary-value problem (57)1,2 for ô ¼o‘2=D ¼ 0.5 and a range of values of

V̂ ¼ V‘2=D¼ 0;1,2;5,10.

Fig. 11. The boundary value ŵðĝ þ Þ ¼ ðwðgþ Þ‘Þ=D (cf. (57)3) evaluated for prescribed values of V̂ and ô ¼ 1;2,3, . . . ,10.
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rod when the terminal load P¼ VðcosðwÞE1þsinðwÞE2Þ where w is a constant. For given values of V, o, ‘ and D, we suspect
that a critical value of w can be found above which peeling dominates and the equilibrium configuration becomes unstable.
A further class of open problems is the development of stability criteria to situations where several limbs of a branched
tree-like structure are in adhesive contact (see Pugno, 2011 and references therein for examples).

The stability criteria we have developed are restricted to problems where the external loading is controlled and the
adhesion is modeled in a very simple manner. It would be of clear benefit to extend our analysis to problems featuring
displacement control. Traditionally, this has entailed introducing isoperimetric constraints which we have yet to consider.
With regards to the adhesive, our model does not include rate effects such as viscoelasticity. In addition the instability
mechanism it predicts is restricted to either the rod buckling or the adhesive being of insufficient strength. We remark that
the easiest example to see the latter effect is in the peeling problem discussed in Section 5.2.
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Appendix A. Proof of the condition N1

The condition N1 presented in Section 4.3 is a necessary condition for the second variation J to be non-negative. Our
proof of this criterion closely follows Bliss’ well-known proof of Jacobi’s necessary condition for the classical variational
problem with fixed endpoints (see, e.g., Theorem 4 in Bliss, 1916 or Theorem 2.10 in the textbook Ewing, 1969).

First, we restrict our attention to variations where g is unchanged: m¼ 0. As m¼ 0, we are interested in finding
piecewise smooth functions wðxÞ which minimize J¼ Ĵ subject to appropriate boundary conditions on wðxÞ

Ĵ ¼

Z ‘

g
ðDw0w0 þPw2Þ dx, wðgþ Þ ¼ 0, w0ð‘Þ ¼ 0: ðA:1Þ

This problem is known as the accessory variational problem and the appropriate necessary conditions for wðxÞ are that it
satisfies a Jacobi differential equation (cf. (29)) and, at points x¼ xd where w0 has a discontinuity, that the Weierstrass–
Erdmann corner conditions are satisfied

Dw00�Pw¼ 0, 1Dw0Uxd
¼ 0, 1Pw2�Dw0w0Uxd

¼ 0: ðA:2Þ

The proof of the criterion is established by contradiction. We assume that Ĵ Z0, but suppose that for some x¼ xc 2 ðg,‘Þ
the solution wðxÞ to the Riccati equation (25) becomes unbounded. Thus, the corresponding solution u to (29) and (30) is
such that uðxcÞ ¼ 0 (i.e., x¼ xc is a conjugate point to x¼ ‘ in the interval ðgn,‘Þ).10 It follows that we can construct a
variation

ZðxÞ ¼
0 8x 2 ½g,xc�,

uðxÞ 8x 2 ðxc ,‘�:

(
ðA:3Þ

Fig. 12. Representative examples of the function P̂cðĝ ,V̂ ,ôÞ (cf. (59)) for various values of V̂ ¼ 0;1,2;5, and 10, and ô ¼ 2.

10 An example of this situation is shown in Fig. 4(b).

C. Majidi et al. / J. Mech. Phys. Solids 60 (2012) 827–843840



Author's personal copy

Substituting Z for w in the expression (A.1)1 for Ĵ and performing an integration by parts, we find that Ĵ ¼ 0

Ĵ ¼

Z ‘

g
ðDZ 0Z 0 þPZ2

Þ dx¼ 0: ðA:4Þ

However, Z0 has a discontinuity at x¼ xc and this violates the necessary Weierstrass–Erdmann corner condition
1DZ 0Uxc

¼ 0 for an extremum (cf. (A.2)2). Thus, we have constructed a function Z which allows J to achieve its supposed
minimum value of 0, but which does not satisfy the necessary condition for an extremizer. We conclude that the minimum
value of J is less than 0 and this is the desired contradiction. In conclusion, if fyn

ðxÞ,gng minimizes P, then the solution to
(25) with wð‘Þ ¼ 0 cannot become unbounded.

To examine the sign of J2 we note that Zð‘Þ is arbitrary and this motivated our earlier choice of the initial condition
wð‘Þ ¼ 0. Appealing to the compatibility conditions (22) and the balance law (13), a more convenient expression for J2 can
be established

J2 ¼ Z2ðgþ Þwðgþ Þþyn0

ðgþ ÞP1m2 ¼ yn0

ðgþ Þðyn0

ðgþ Þwðgþ ÞþP1Þm2: ðA:5Þ

The necessary condition for J2Z0 that is discussed in the condition N1 easily follows from (A.5).

Appendix B. Derivation of Eq. (42)

We begin our derivation of (42) by rearranging the terms in (41)2

dy0

dx
¼�

P

D
cosðyÞ: ðB:1Þ

The n ornamenting y is dropped in this appendix. A standard integration yields

1

2
ðy0Þ2 ¼ C�

P

D
sinðyÞ, ðB:2Þ

where C is a constant of integration. Evaluating (B.2) at x¼ g and applying the adhesion boundary conditions (41)3 and
(41)5 shows that C ¼o=D. Next, rearranging terms and introducing the transformation y¼ 2j�p=2 leads toffiffiffiffiffiffiffiffiffiffiffiffi

2D

Pþo

r
dj
dx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m sin2

ðjÞ
q

, ðB:3Þ

where m¼ 2P=ðPþoÞ. In order to arrive at (B.3), we made use of the trigonometric identities sinðj�p=2Þ ¼�cosðjÞ and
cosð2jÞ ¼ 1�2 sin2

ðjÞ.
Integrating (B.3) over the domain O¼ ðg,x� yieldsZ

O

djffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m sin2

ðjÞ
q ¼

Z
O

ffiffiffiffiffiffiffiffiffiffiffiffi
Pþo

2D

r
dx: ðB:4Þ

Noting that yðgÞ ¼ 0, it follows that jðgÞ ¼ p=4. After integrating (B.4), we find that

Fðj9mÞ�F
p
4

���m� �
¼ ðx�gÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
Pþo

2D

r
: ðB:5Þ

The Jacobi amplitude j is determined by simply inverting the incomplete elliptic integral of the first kind Fðf9mÞ to obtain

j¼ amðv9mÞ, v¼ ðx�gÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
Pþo

2D

r
þF

p
4

���m� �
: ðB:6Þ

Substituting the solution (B.6) for j into the expression y¼ 2j�p=2 yields the result

y¼ 2amðv9mÞ�
p
2

, ðB:7Þ

which corresponds to (42)1.
The contact length g is determined by applying the boundary condition (41)4 to (B.3). Noting that y0ð‘Þ ¼ 0 it follows

from (B.3) that sinðjÞ ¼ ffiffiffiffimp , where m¼ 1=m. Next, we invoke the Jacobi identity snðv9mÞ ¼
ffiffiffiffimp snðv

ffiffiffiffiffi
m
p

9mÞ. Together,
snðv9mÞ ¼

ffiffiffiffimp and snðv9mÞ ¼
ffiffiffiffimp snðv

ffiffiffiffiffi
m
p

9mÞ imply that snðv
ffiffiffiffiffi
m
p

9mÞ ¼ 1 at x¼ ‘. This implies that v
ffiffiffiffiffi
m
p
¼ KðmÞ and so

evaluating v at ‘ leads to the identity

ð‘�gÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
Pþo

2D

r
þF

p
4

���m� �
¼

1ffiffiffiffiffi
m
p KðmÞ: ðB:8Þ

Rearranging terms to solve for g yields (42)2.
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Appendix C. Derivation of Eq. (54)

As in Appendix B, we begin by performing a separation of variables on the ordinary differential equation
y00 ¼ ðV=DÞsinðyÞ and integrating to obtain

1

2
ðy0Þ2 ¼ C�

V

D
cosðyÞ: ðC:1Þ

The n ornamenting y is also dropped in this appendix and the constant of integration C is determined by applying the
boundary conditions (53)2,4: C ¼ ðVþoÞ=D. Next, introducing the transformation y¼ p�2j and rearranging terms yields

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D

2Vþo

r
dj
dx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m sin2

ðjÞ
q

, ðC:2Þ

where m¼ 2V=ð2VþoÞ.
We now perform a separation of variables and integrate over the domain O¼ ðg,x�Z

O

djffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m sin2

ðjÞ
q ¼

Z
O
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vþo

2D

r
dx: ðC:3Þ

Noting that jðgþ Þ ¼ p=2, it follows that

Fðj9mÞ�KðmÞ ¼ �ðx�gÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vþo

2D

r
: ðC:4Þ

Inverting (C.4) leads to the following solution for y

y¼ p�2amðv9mÞ, ðC:5Þ

where

v¼ KðmÞ�ðx�gÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vþo

2D

r
: ðC:6Þ

This is the same result presented in (54)1.
According to (53)3, yð‘Þ ¼ p=2, which implies jð‘Þ ¼ p=4. Evaluating (C.4) at x¼ ‘ enables us to conclude that

g¼ ‘� KðmÞ�F
p
4

���m� �n o ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D

2Vþo

r
: ðC:7Þ

This solution for g corresponds to (54)2.
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