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a b s t r a c t

A theory is developed to explain the spontaneous bending of polar 7 ð0 0 0 1Þ faceted

wurtzite nanoribbons, including the widely studied case of zinc oxide (ZnO) nanoarcs

and nanorings. A rigorous thermodynamic treatment shows that bending of these

nanoribbons can be primarily attributed to the coupling between piezoelectric effects,

electric polarization, and the motion of free charge originating from point defects and/or

dopants. The present theory explains the following experimental observations: the

magnitude and sign of curvature and how this curvature depends on film thickness and

dopant concentration. Good agreement between theory and experiment is obtained

with no adjustable parameters. We identify three regimes of bending behavior with

distinct thickness dependence for bending radius that depend on free carrier density,

film thickness, and elastic, piezoelectric and dielectric constants.

& 2009 Elsevier Ltd All rights reserved.

1. Introduction

Understanding the physical mechanisms that control the growth and structure of nanoscale structures is key in
developing materials for novel applications. Of particular interest are single crystal nanoribbons or nanobelts of several
compound semiconductors and ceramics, which have been observed to spontaneously bend into what have been referred
to as nanoarcs and nanorings. These include hexagonal (wurtzite) ribbons that have polar 7 ð0 0 0 1Þ faces and are
composed of zinc oxide (ZnO) (Kong and Wang, 2003), gallium nitride (GaN) (Jian et al., 2007), and aluminum nitride (AlN)
(Duan et al., 2005). Such observations have been made for nanoribbons where typical dimensions are thickness � 10 nm,
width � 102100 nm and length � 12100mm. By spontaneously bent, we mean that the nanoribbons bend into circular arcs
or rings to minimize the potential energy of the nanoribbon. Due to their unique combination of electrical, mechanical, and
geometric properties, piezoelectric nanoribbons will likely play a significant role in emerging nanotechnologies, from
nanoelectromechanical systems (NEMS) (Wang, 2004) to energy harvesting (Wang and Song, 2006). For an overview of
piezoelectric nanoribbons and their applications, see Wang (2004).

In this paper, we carry out a comprehensive thermodynamic analysis to identify the relevant physical effects that
govern this phenomena and distinguish between competing mechanisms that could (or have been argued to) produce
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bending. Based on this analysis, we suggest that spontaneous bending is controlled by piezoelectric interactions and charge
distributions in these materials. The theoretical predictions are consistent with the experimental observation that the
radius of curvature is constant and on the order of � 0:121mm (Hughes and Wang, 2004).

Previous studies have considered the contributions of elasticity, surface stress, electrostatics, and polarization-induced
surface charge to the energetic stability of curved nanoribbons (Kong and Wang, 2004; Tu et al., 2006). Hughes and Wang
(2004) reject the surface stress model to explain bending in ZnO ribbons, since it only allows bending towards a specific
crystallographic direction, whereas bending is experimentally observed towards both the Zn-terminated (0 0 0 1) or
O-terminated ð0 0 0 1Þ surfaces. Also, as demonstrated in the current analysis, electrostatic effects generated by
polarization-induced surface charge effectively increase the bending stiffness of the nanoribbon and do not lead to
spontaneous bending. This is in contrast to the suggestions of Kong and Wang (2004), who assume that surface charge
density remains fixed during bending. In the current analysis, we employ the more physical postulate that surface charge is
fixed to the crystal lattice, such that total surface charge and not surface charge density is preserved during bending.

Here, we present a comprehensive theory that, in addition to elasticity, surface stress, electrostatics, and surface charge,
also includes the energetic contributions of piezoelectricity and space charge.1 While previous studies have ignored such
effects, the current analysis clearly demonstrates that they are necessary for explaining the spontaneous bending
observations. Interestingly, observations show that ZnO nanoribbons that are doped with impurities (such as indium)
bend, while undoped ZnO ribbons do not (Kong et al., 2004; Wang, 2004).

The theory suggests that spontaneous bending is governed by piezoelectric interactions induced by local space charge.
In the case of a charge neutral bulk, local space charge may be induced by the accumulation of charge carriers that leave
behind lattice ions of opposite charge, resulting in a non-uniform charge distribution. Experimental measurements
performed on ZnO nanowires indicate a charge carrier density as high as � 1027=m3 (Konenkamp et al., 2000). According
to the theory, carrier densities at or within 1–2 orders of magnitude below this value can lead to radii of curvature of the
same magnitude as those observed experimentally ð � 0:1210mmÞ. This is the first theory that successfully reproduces a
wide range of experimental observations: (1) the magnitude and sign of the experimentally measured radii of curvature,
(2) how this curvature depends on nanoribbon thickness, and (3) the dependence of the sign and magnitude of the
curvature on dopants.

In our theory, spontaneous bending arises through the following mechanism, which is illustrated in Fig. 1. First, the
wurtzite structure of the nanoribbon (Fig. 1 a) induces an electric field with components perpendicular to the polar
surfaces. This causes mobile charges to accumulate on one of the polar faces, depending on the sign of the charge carrier
(Fig. 1 b). Uniform carrier depletion induces an internal electric field that varies linearly across the nanoribbon thickness
(Fig. 1 c). Because of the piezoelectric coupling, this gradient in the electric field is accompanied by a gradient in the elastic
strain that results in uniform nanoribbon bending (Fig. 1 c). The theory also identifies three different regimes of
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Fig. 1. Mechanism for spontaneous bending: (a) ZnO nanoribbon has a wurtzite crystal lattice with a non-centrosymmetric distribution of positively

charged Zn ions and negatively charged O anions; (b) the free carriers move to neutralize surface polarity, leaving behind a depletion layer of oppositely

charged lattice ions (Harris et al., 2000; Allen et al., 2007); (c) inside the depletion layer, the electric field varies linearly along the nanoribbon thickness

and induces bending strain through piezoelectric coupling.

1 By local space charge, we mean net electric charge in a region (arising from, e.g., point defects or dopants) that is large compared to the distance

between atoms, yet smaller than the dimensions of the ribbon.
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deformation, for which the bending radius is either (I) independent of nanoribbon thickness, (II) linearly proportional to it,
or (III) scales quadratically with it. While the crossover behavior between these regimes is controlled by the details of the
mobile charge distribution, the asymptotic regime (III) is universal and governs the bending behavior of all piezoelectric
and polar materials with sufficiently large thickness. In addition to planar bending, the theory provides a rigorous
framework to examine non-planar nanoribbon geometries such as nanosprings and helices and to describe the effects of
lattice defects.

The rest of the article is organized as follows. Following a derivation of the governing equations in Section 2, we present
the kinematics for the planar bending of a nanoribbon (Section 3). Closed-form solutions for deformations are then
obtained for the special cases of surface stress (Section 4), surface charge (Section 5), and space charge (Section 6). Finally,
Section 7 contains a brief discussion, while details of some of the more involved calculations and derivations can be found
in the Appendices.

2. Governing equations

In order to derive the governing equations for nanoribbon bending, we first consider a generalized piezoelectric body
embedded in a fixed, global Cartesian frame fe1; e2;e3g. In the reference configuration B0, material points occupy positions
X 2 B0. From B0, the points undergo elastic displacement u¼ uðXÞ to a final position x¼ vðXÞ ¼Xþu in the energetically
favorable and mechanically stable configuration B. Here, v : B0-B represents the deformation mapping of material points
to their spatial coordinates in B and is assumed to be invertible. In addition to kinematic displacement, there is an electric
potential F¼FðXÞ associated with material points.

The energy density of the nanoribbon is a function of the second-order strain tensor c and electric intensity vector E. For
arbitrary displacements but small strain c is approximated by the infinitesimal strain tensor:

c¼ 1
2 ruþru>
� �

; ð1Þ

where ru¼ F�I is the displacement gradient, F¼rv¼ v�r is the deformation gradient, and I is the second-order
identity tensor (Bertram, 2005). Here, r is defined as the gradient operator with respect to the material coordinate system
and� is the dyadic product (Q ¼ u� v where Qij ¼ uivj). The operatorr is also used to compute the electric intensity in the
material description:

E¼�rF: ð2Þ

Since c and E are treated as independent variables, the energy density corresponds to the enthalpy density (Pak, 1992;
Jogai et al., 2004):

h¼ 1
2 c : C : c�E � ðg : cÞ�1

2E � ðe � EÞ�P0 � E: ð3Þ

Here, C is the fourth-order stiffness tensor, g is the third-order piezoelectric coupling tensor, e is the second-order electric
permittivity tensor, P0 is the vector for spontaneous polarization and the double contraction (:) in the tensor C : c has
components Cijklgkl (and similarly for tensors of other ranks). These tensors have the following symmetry properties (Ding
and Chen, 2001):

Cijkl ¼ Cijlk ¼ Cjikl ¼ Cklij; gijk ¼ gikj; eij ¼ eji: ð4Þ

Lastly, the second-order stress tensor T and electric displacement vector D are related to c and E through the constitutive
equations, which in view of (3) and (4), may be expressed as

T¼
@h

@c
¼ C : c�E � g; ð5Þ

D¼�
@h

@E
¼ g : cþe � EþP0: ð6Þ

It is important to note that the stress tensor is symmetric, i.e., T¼ T>. Also, as apparent in the expression for D, the total
polarization of the crystal is divided into a linear dielectric term, which is contained in e � E, and a constant P0 associated
with spontaneous polarization. This representation of polarity is widely used in the literature for both piezoelectric and
ferroelectric materials (Bernardini et al., 1997; Huber et al., 1999; Jogai et al., 2004).

In addition to the free variables c and E, the following fields in the body are prescribed: space charge density r, surface
charge density s (including surface charge associated with spontaneous polarization), and surface traction t̂. Here, the hat
over a variable q̂ indicates that q takes on a prescribed value and is not a free variable. The total potential energy of the
nanoribbon is (Ding and Chen, 2001)

P¼
Z
B
fhþrFgdVþ

Z
@B
fsF�t̂ � ugdS: ð7Þ
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Here, the inverse mapping X¼ v�1ðxÞ is used to evaluate terms on B that are otherwise defined in the material description.
At equilibrium, P must be stationary with respect to variations in u and F. Consider variations of the form

u-uþdu; ru-ruþrdu; F-FþdF and rF-rFþrdF: ð8Þ

As shown in Appendix A, the corresponding variation in P vanishes if and only if the balance equations

r � T¼ 0 in B; T � n¼ t̂ on @B ð9Þ

and

r � D¼ r in B; D � n¼�s on @B ð10Þ

are satisfied. Here, n represents the unit normal to @B. As expected, Eqs. (9) and (10) are the differential and boundary
forms for the stress balance and Gauss’s law, respectively. Nonetheless, to specialize these to the curved nanoribbon,
below, it will be necessary to restrict the underlying kinematics. Finally, a finite surface stress T̂ can be incorporated to the
theory by introducing a surface layer of finite thickness with a modified constitutive equation T¼ C : c�E � g�T̂.

3. Nanoribbon model

The nanoribbon is modeled as an extensible, planar, rod of length L, width w, and thickness H. The centerline is treated
as a directed (Cosserat) curve whose orientation is defined by the body-fixed orthonormal directors fd1;d2;d3g. In the
reference configuration B0, these coincide with the Cartesian bases fe1; e2;e3g. Deformation is restricted to the e12e3 plane,
and so the director d2 will always coincide with e2. Furthermore, upon the deformation from B0 to B, cross-sections are
assumed to remain planar and perpendicular to the center line.

Material points are uniquely identified by a set of curvilinear coordinates fx; y; zg and the gradient operator has the form
r¼ @=@xd1þ@=@yd2þ@=@zd3. As shown in Fig. 2, the nanoribbon is flat in its reference configuration B0 and forms a
circular arc of uniform curvature in the final configuration B. The centerline has an arclength x 2 ½0; L�, slope y¼ yðxÞ, and
curvature k¼ dy=dx. The director d1 is defined as tangent to the centerline:

d1 ¼ cosye1þsinye3: ð11Þ

Also, d3 is normal to the midplane of the nanoribbon and towards the direction of positive curvature:

d3 ¼ d1 � d2 ¼�sinye1þcosye3: ð12Þ

For 7ð0 0 0 1Þ faceted crystals, d3 is directed along [0 0 0 1] or the c-axis.
In addition to a constant bending curvature k, the nanoribbon is subject to a constant elongation strain g0 along d1 and

a thickness contraction strain g33 ¼ g33ðzÞ along d3. Thus, the strain tensor is restricted to the form

c¼ g11d1 � d1þg33d3 � d3; ð13Þ

where g11 ¼ g11ðzÞ ¼ g0�kz and g33 ¼ g33ðzÞ. Also, the electric intensity becomes

E¼ E1d1þE3d3; ð14Þ

where E1 ¼ @F=@x and E3 ¼ @F=@z. Finally, in the absence of shear strains and normal strain along d2, the constitutive
equations for a wurtzite crystal reduce to (Ding and Chen, 2001)

T11 ¼ C11g11þC13g33�g31E3; ð15Þ

ARTICLE IN PRESS

Fig. 2. The nanoribbon is treated as an elastic membrane with slope y¼ yðxÞ. B0 refers to the flat reference configuration with coordinate system X and B
to the instantaneous curved body composed of points x¼Xþu. The illustration in the inset is a schematic of the ZnO lattice structure viewed along

½2 1 1 0�, where the red and blue circles represent O2- and Zn2þ ions, respectively. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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T33 ¼ C13g11þC33g33�g33E3; ð16Þ

T13 ¼ T31 ¼�g15E1; ð17Þ

D1 ¼ e11E1; ð18Þ

D3 ¼ g31g11þg33g33þe33E3þP0: ð19Þ

Here, Voigt notation has been used: Cijkl ¼ Cmn and gkij ¼ gkm, where m¼ fi if i¼ j; 5 otherwiseg and n¼ fk if k¼

l; 5 otherwiseg and i; j 2 f1;3g. Also note that spontaneous polarization P0 ¼ P0d3 only occurs in the d3 direction.
Subsequent calculations are based on the material constant for ZnO. For bulk ZnO, C11 ¼ 210 GPa, C13 ¼ 105 GPa,

C33 ¼ 211 GPa, g31 ¼�0:61 C=m2, g33 ¼ 1:14 C=m2, e33 ¼ 7:38� 10�11 F=m (Ding and Chen, 2001) and the spontaneous
polarization P0 ¼ 0:057 C=m2 (Bernardini et al., 1997).

4. Surface stress

We first analyze the role of surface stress on nanoribbon bending. Surface stress is defined as the variation of the surface
free energy with respect to strain and is a two-dimensional, second order tensor. Physically, nonzero surface stresses arise
because the atomic configurations and atomic bonding on the surface differs from those in the bulk crystal (Cahn and
Hanneman, 1964). In non-centrosymmetric crystals, opposite crystal faces may have different surface stresses.

Surface stress along the length of the nanoribbon can be represented as an internal stress T̂ ¼ T̂ 11ðzÞd1 � d1, where

T̂ 11 ¼ lim
t-0

fa=t; z 2 ½a�t; a�;
0; z 2 ðbþt; a�tÞ;
fb=t; z 2 ½b; bþt�;

8><
>: ð20Þ

a¼H=2, b¼�H=2, the constants fa and fb have dimensions of force per length, and t is the surface thickness. Because T̂ is
not smooth, it is necessary to rederive the governing equations related to variations in the displacement u (Gauss’s law,
however, still remains valid). This is accomplished by obtaining an algebraic expression for the potential energy
P¼Pðg0;kÞ and then solving the equilibrium conditions @P=@g0 ¼ @P=@k¼ 0 for g0 and k. This yields (see Appendix B for
derivation)

g0 ¼
faþ fb

CH
and k¼ 6ðfb�faÞ

CH2
; ð21Þ

where C (B.3) is the effective elastic modulus and takes into account both elastic stiffness and piezoelectric coupling. Using
bulk parameters for ZnO, C is calculated to be 175 GPa.

The equations in (21) give the relationship between the nanoribbon stretch ðg0Þ and bending curvature ðkÞ as a function
of the surface stresses fa and fb, which act on the z¼ a (Zn-terminating) and z¼ b (O-terminating) surfaces, respectively. It
is interesting to note that using a simple stress–strain argument, Cahn and Hanneman (1964) predict that the equilibrium
curvature is k� 6ðfb�faÞ=YH2, where Y ¼ C11�C2

13=C33 is Young’s modulus. This is close to the result obtained from the
general energy analysis here, but with the effective elastic modulus C replaced by Y. The difference occurs because Cahn
and Hanneman (1964) do not include piezoelectric couplings in their derivation. Indeed, if the piezoelectric coupling
coefficients ðgijÞ vanish, then C reduces to Y, which is equivalent to the bending modulus corrected for plane stress.

While surface stress values have not been measured (to our knowledge) for ZnO (0 0 0 1), experience in a range of
physical systems suggest that jfaj and jfbj should each be no larger than a few N=m ðJ=m2Þ (Cahn and Hanneman, 1964). For
a ZnO nanoribbon of thickness H¼ 10 nm and jfb�faj � 1 N=m, R¼ 1=k� 3mm which is an order of magnitude greater than
the smallest values observed experimentally ð � 350 nmÞ. Moreover, surface stresses only allow bending towards a specific
crystallographic direction, i.e., the direction with the smaller value for f. In contrast, experimental observations reveal that
ZnO nanoribbons can bend towards either the Zn-terminated (0 0 0 1) or O-terminated ð0 0 0 1Þ surface (Hughes and Wang,
2004). Hence, we do not expect surface stresses to be the dominant source of ZnO nanoribbon bending. Of course, we cannot rule
out the possibility that adsorbates or massive reconstructions of the two polar surfaces may affect the relative magnitudes
of fa and fb, leading to bending towards either surface.

5. Surface charge

Another possible explanation for nanoribbon bending considered in the literature concerns surface charge induced by
spontaneous polarization. As discussed in Wang (2004) and illustrated in the inset to Fig. 2, the wurtzite structure of ZnO
may be described as a stack of alternating planes of O2� and Zn2þ ions. Hence, the z¼ a	H=2 and z¼ b	�H=2 surfaces
will contain a bound sheet charge of P0 and �P0, respectively.

Polarization induced surface charge can influence nanoribbon energetics in several ways. One approximation treats the
nanoribbon as a capacitor in which the stored electrostatic energy depends on the radius of curvature. This model was
introduced by Kong and Wang (2004) and is summarized below in Section 5.1. Lastly, surface charge and polarization can
induce elastic strain through piezoelectric coupling. This is analyzed in Section 5.2 using the results of the energy analysis.

ARTICLE IN PRESS
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In all the aforementioned cases, the model calculations confirm the key result that neither surface charge nor
spontaneous polarization are sufficient for nanoribbon bending. In fact, as with elastic strain, they actually introduce an
energetic penalty to bending and effectively increase the bending stiffness.

5.1. Capacitor model

The divergence of the polarization at the f0 0 0 1g faces of the nanoribbon implies that these surface are charged. Hence,
the nanoribbon can be treated as a capacitor. Neglecting edge effects, the stored electrostatic energy is f¼ Q2=2C, where
Q ¼ swL is the total charge stored on either surface and C is the capacitance. For a flat nanoribbon, C¼ e33wL=H, where e33

is the electric permittivity. Assuming that the nanoribbon forms a circular ring of radius jRj ¼ L=2p, the capacitance
becomes C¼ 2pe33w=lnðR2=R1Þ, where R1 ¼ jRj�H=2 and R2 ¼ jRjþH=2 are the inner and outer radii, respectively. Here
we adopt the convention that the inside of the ring corresponds to the Zn-terminated face when R is positive and to the
O-terminating face when R is negative.

Noting that Q ¼ swð2pjRjÞ, it follows that the electrostatic energy increases (relative to the planar nanoribbon) by an
amount

Df¼
Q2

4pe33w
ln

1þb
1�b

� �
�2b

� �
�
pws2H3

12e33jRj
; ð22Þ

when the ribbon is bent into a ring, where b¼H=2jRj. The total increase in potential energy upon bending the ribbon into a
ring is obtained by combining the change in the elastic and electrostatic energies. This yields

DP¼ C

pwH3

12jRj
where C
 ¼ Yþ

s2

e33
: ð23Þ

That is, the electrostatic effects induced by surface charge alone results in an effective increase in Young’s modulus. Hence,

electrostatic effects as represented in the capacitor model always increase the bending stiffness and reduce the tendency for

nanoribbon bending. Moreover, the contribution to the overall potential energy will be negligible compared to that of elastic
bending. Bending a ZnO nanoribbon of thickness H¼ 10 nm and width w¼ 50 nm into a ring of radius R¼ 1mm increases
the electrostatic energy by 6� 10�19 J, which is four orders of magnitude less than the increase of 2� 10�15 J in elastic
strain energy.

In their derivation, Kong and Wang (2004) make the explicit assumption that surface charge density rather than surface
charge remains fixed during bending. While this would lead to bending, in accordance with their conclusion, such an
assumption has not yet been justified theoretically or confirmed experimentally. In fact, if the surface charge arises from
the polarization inside the ribbon, the surface charge would be constant (as we assume) and in contradiction to the
assumption of Kong and Wang (2004).

5.2. Piezoelectricity

Lastly, surface charge and spontaneous polarization can interact with elastic strain through the piezoelectric coupling.
In order to evaluate the contributions of these effects alone, we ignore space charge, surface stress, and boundary tractions,
i.e., r¼ T̂ ¼ t̂ ¼ 0. Also, since P0 is already included in the constitutive equation for D3 (19), we do not explicitly consider
the spontaneous polarization as contributing to the surface charge. Rather, any charge on the surface that is present for any
reason other than the spontaneous polarization is considered as surface charge s0. Such charge may come from within the
crystal (e.g., from dopants or point defects) or from external adsorbants (Noguera, 2000). The former will lead to space
charge inside the bulk of the material, which is the subject of Section 6. In the present subsection, we assume that any
surface charge s0 is associated with externally introduced surface adsorbents or from an electrolytic solution in which the
nanoribbon is immersed. Surface polarity is completely canceled when s0 ¼ P0.

As the nanoribbon stretches and bends, the surface charge density s changes such that the total charge on the surface
remains fixed. In the Eulerian (deformed) description, sðaÞ ¼ s0f1�g11ðaÞg, sðbÞ ¼ �s0f1�g11ðbÞg, and D3 ¼�s0ð1�g11Þ,
where g11 ¼�kz. The electric displacement must also satisfy the condition D3 ¼ P0�Zðg0�g11Þ, which is derived from the
constitutive equations when T¼ 0.2 The constant Z is defined in Eq. (C.8) and is evaluated for prescribed piezoelastic
coefficients. These two expressions for D3 must simultaneously hold for all z 2 ½�H=2;H=2� and imply

g0 ¼
P0þs0

Z
and k¼ 0: ð24Þ

ARTICLE IN PRESS

2 The condition T¼ 0 is obtained by simultaneously solving the stress balance r � T¼ 0, boundary condition T � n¼ 0, constitutive law T¼ C : c�E � g,

and compatibility condition r � E¼ 0.
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In other words, while surface charge does lead to an overall stretching of the nanoribbon, it alone does not induce any bending

curvature. This result is consistent with the models presented in Sections 5.1. Using physical constants for ZnO
(Z¼ 11:85 C=m2 and P0 ¼ 0:057 C=m2), this implies that in the absence of surface charge ðs0 ¼ 0Þ g0 ¼ 0:005 or a shortening
of the nanoribbon by half of a percent. However, if the nanoribbon is placed in a charged environment that completely
neutralizes the polarization ðs0 ¼�P0Þ, then the stretching strain g0 is identically zero.

6. Space charge

Finally, we turn our focus to the role of space charge in nanoribbon bending. The local space charge density r¼ rðzÞ is
defined as the net charge associated with both free carriers3 and fixed ionic species4 integrated over a small volume
element. Space charge is generated by the depletion or accumulation of free charge carriers, which produce the sheet
charges sa and sb (on the Zn- and O-terminated surfaces, respectively) that are necessary to cancel surface polarity
(Vanderbilt and King-Smith, 1993; Noguera, 2000; Harris et al., 2000; Allen et al., 2007). In order to maintain overall charge
neutrality, the local space charge density must satisfy the balance saþsbþ

R
rdz¼ 0. As before, the indices a and b

correspond to values at the coordinates z¼H=2 and z¼�H=2, respectively.
One contribution to space charge is the movement of free carriers originating from defects (such as O vacancies or Zn

interstitials) and/or dopants (donors or acceptors). When uniformly distributed, such carriers have a charge density qn0,
where q is the charge of the carriers (for electrons, q¼�1:6� 10�19 C) and n0 is the carrier concentration. When the
carriers move to the surface of the crystal, they leave behind a depletion layer of ionized donors or acceptors with charge
density r0, which in the case of complete depletion can be as great as �qn0. Other sources of space charge are the inversion
and accumulation layers that may form near nanoribbon faces (Harris et al., 2000; Allen et al., 2007; Sze, 1981).

Even without intentional doping, GaN and ZnO wafers typically contain free carriers with densities ranging from
n0 ¼ 1020 to 1025 m�3 (Harris et al., 2000; Allen et al., 2007). In the case of ZnO nanowires, the carrier density can reach as
high as 1027 m�3 (Konenkamp et al., 2000). ZnO typically exhibits n-type semiconducting properties, although p-type ZnO
has also been fabricated (Yuan et al., 2008; Braunstein et al., 2005). In subsequent calculations, we will assume, for the sake
of convenience and because it is the most common case, that the nanoribbons are n-type (unless otherwise noted).

For an n-type nanoribbon, the free carriers will be negatively charged and are thus expected to accumulate on the
Zn-terminated surface. Since the O-terminated surface has an effective negative charge due to O2� surface ions, it will not
attract negatively charged free carriers from the bulk and so sb ¼ 0.5 Therefore, at z¼ a there will be a sheet charge with a
charge density sa ¼�

R a
b rðzÞdz. This carrier migration leaves a depletion layer of thickness Hd with rðzÞ40, whose

properties govern nanoribbon bending through a piezoelectric coupling, to which we turn next.

6.1. Piezoelectric-induced deformation

The uniform stretch g0 and curvature k are found by minimizing the total potential energy of the nanoribbon in Eq. (7).
For pure bending, g11 ¼ g0�kz and g33 ¼ g33ðzÞ. At equilibrium P must be stationary with respect to infinitesimal variations
in the unknowns FðzÞ, g0, k, and g33ðzÞ. These conditions are equivalent to the boundary and differential forms of Gauss’
Law in the Lagrangian (undeformed) description: DzðH=2Þ ¼ �sa, Dzð�H=2Þ ¼ sb, and @Dz=@z¼ rðzÞ, the balance of stress
and moment:

R
Txx dz¼

R
Txxz dz¼ 0, and the condition for plane stress: Tzz ¼ 0. In light of the constitutive equations, these

balance laws imply

g0 ¼
P0

Z
�

1

HZ

Z H=2

�H=2

Z z

�H=2
rð~zÞd~z dz and k¼ 12

H3Z

Z H=2

�H=2
z

Z z

�H=2
rð~zÞd~z dz; ð25Þ

where the constant Z is expressed in (C.8) in terms of the piezoelastic coefficients; for ZnO, Z¼ 11:85 C=m2. Eq. (25)
establish the link between nanoribbon deformation and mobile charge density, and constitute a central result of this paper.

In order to both illustrate the physical implications of (25) and keep the calculations analytically tractable, we will only
consider the simple cases where rðzÞ is either spatially uniform (Hd ¼H; r¼ r0) or restricted to a narrow region close to
the (0 0 0 1) surface (HdoH; r¼ r0 within the depletion layer and r¼ 0 elsewhere). In either case, it follows from (25) that

g0 ¼
P0

Z
�
r0H2

d

2ZH
and k¼

r0H2
dð3H�2HdÞ

ZH3
: ð26Þ

The above relationships express the stretch ð1þg0Þ and bending curvature ðkÞ as a function of the nanoribbon thickness
(H), depth ðHdÞ and space charge ðr0Þ of the depletion layer, spontaneous polarization ðP0Þ, and piezoelastic constants ðZÞ. In
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3 Free carriers are point charges that can move through the lattice on experimental time scales. Examples include charged vacancies and interstitials

or electrons and holes.
4 These do not move significantly on the time scale of experiments. Ionic species also include dopant species, like Inþ in ZnO.
5 The polarity at the z¼ b face will induce strong band bending in the electronic structure of the crystal, resulting in the formation of an accumulation

layer. In this case, sb will be equal and opposite to the charge in the accumulation layer. However, the thickness of the accumulation layer is small in

comparison to H and so the accumulation layer can be treated as part of the z¼ b face. In this case, the surface charge and charge in the accumulation

layer cancel each other, leaving sb to be effectively equal to zero.
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the remainder of this section, we focus on three idealized three depletion regimes defined by the length scales H, H1,
and H2:

(I) Complete depletion ðHoH1Þ: All the free electrons accumulate on the Zn-terminated surface (Hd ¼H and r0 ¼ jqjn0Þ:

(II) Uniform depletion ðH1rHrH2Þ: Some free electrons accumulate on the Zn-terminated surface while the rest are
uniformly distributed throughout the interior (Hd ¼H and r0o jqjn0Þ:

(III) Partial depletion ðH4H2Þ: Only free carriers near the surface are depleted ðHdoHÞ.

The assumption that space charge is uniform within the depletion layer has been adopted for the sake of mathematical
convenience and to allow for an algebraic expression of the predicted bending curvature. Experiments and more accurate
theoretical models indicate that space charge is not uniformly distributed inside the depletion zone. Nonetheless, it is
common practice in semiconductor physics to adopt the so-called ‘‘uniform depletion’’ model (Sze, 1981).

Complete depletion is expected to occur if the thickness of the nanoribbon is below a critical value H1 ¼ P0=jqjn0. In such
a case, the surface charge jsaj ¼ jqjn0HoP0 and is thus inadequate to balance surface polarity. Following from (26),
g0 ¼ ðP0þqn0H=2Þ=Z and k¼�qn0=Z, i.e., the bending radius R¼ 1=k is independent of H. However, if HZH1 then surface
polarity can be completely screened by the free carriers (sa ¼�P0). For uniform depletion (i.e., Hd ¼H), this implies
r0 ¼ P0=H and so it follows from (26) that g0 ¼ P0=2Z and k¼ P0=ZH. In this case, the bending radius will be directly
proportional to the nanoribbon thickness, i.e., R¼ ZH=P0.

If the depletion layer thickness Hd is too large then an inversion layer, which prevents further widening of the depleted
region, will form. Specifically, Hd is bounded from the above by HdrH2 ¼minf2eEg=P0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eEg=jqjn0

p
g (Harris et al., 2000;

Allen et al., 2007), where Eg is the bandgap and

e ¼ e33þ
g2

31C33�2g31g33C13þg2
33C11

C11C33�C2
13

ð27Þ

is the effective permittivity for a stress-free nanoribbon (i.e., D3 ¼ P0þeE3). In the case of ZnO, Eg ¼ 3:37 V and
e ¼ 8:88� 10�11 F=m. For 1020rn0r1027 m�3, H1 is in the range 0.35 nm to 3.5 mm and H2 ranges from 10.5 nm to 10mm.
Following from (26), partial depletion corresponds to a stronger dependence between bending radius and thickness:
R� ZH2=ð3r0H2

dÞ. Upon increasing the nanoribbon thickness, we thus expect the bending radius to asymptotically exhibit a
quadratic dependence on nanoribbon thickness, with the details of the spatially varying charge distribution only affecting
the prefactor. In this sense, all such piezoelectric films should display universal behavior with regard to bending.

It is interesting to note that in all three regimes, k vanishes for non-piezoelectric materials since Z¼1 when the
piezoelectric coupling coefficients are zero. Since k40, the ribbon bends towards the Zn-terminated face. If, however,
the nanoribbon is p-type ðqo0Þ, then the same analysis predicts a negative curvature (the ribbon bends towards
the O-terminated surface). Theoretical predictions for the three depletion regimes are presented in Fig. 3(a) for
Z¼ 11:85 C=m2, P0 ¼ 0:057 C=m2, and varying values of carrier concentration n0 and nanoribbon thickness H. For
n0 ¼ 1026 m�3, the relationship between bending radius and thickness appears as in Fig. 3(b), with critical thicknesses
calculated to be H1 ¼ 3:6 nm and H2 ¼ 10:5 nm. Also shown in Fig. 3(b) are theoretical predictions for AlN and GaN.

In Figs. 4(a) and (b), we superimpose theoretical curves for ZnO on the experimental data (Hughes and Wang, 2004) to
demonstrate the agreement between theory and experiment. The agreement is reasonable given that there are no

ARTICLE IN PRESS

Fig. 3. (a) Predicted curvature ðkÞ as a function of nanoribbon thickness (H) and carrier concentration ðn0Þ for ZnO (P0 ¼ 0:057 C=m2 and Z¼ 11:85 C=m2).

(b) Bending radius ðR¼ 1=kÞ versus thickness; from right: n0 ¼ 1025 ;2� 1025, 5� 1025, 1026, 1027 m-3. (c) Theoretical predictions with n0 ¼ 1026 m-3 for

(solid black) ZnO, (dashed red) AlN, and (dash-dot blue) GaN. The three regimes are shown for the ZnO nanoribbon: (I) complete depletion, (II) uniform

depletion, (III) partial depletion. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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adjustable parameters, although the theory appears to more accurately represent a lower bound on the thickness required
to achieve the observed curvature. Theoretical and empirical agreement might be improved by including additional effects
not addressed in the analysis, such as surface stress and crystal defects (Tu et al., 2006), that can increase the spontaneous
curvature and cause the theoretical curves in Fig. 4(b) to shift to the left. Lastly, the average elastic modulus of ZnO
nanowires has been measured to be 40 GPa (Manoharan et al., 2008), well below the bulk value of 210 GPa used to evaluate
Z. Reducing the stiffness coefficients by 80%, we find strong agreement with a carrier concentration of n0 ¼ 2� 1025 m�3, as
seen in Fig. 4. While still high, this is an order of magnitude less than the values measured for a ZnO nanowire (Konenkamp
et al., 2000; Sero et al., 2006).

6.2. Depletion-induced electrostatic deflection

Space charge can induce ribbon bending even in the absence of piezoelectric coupling ðg¼ 0Þ. In the case of a ZnO
nanoribbon, the formation of a depletion layer near the Zn-terminated surface results in a non-uniform distribution of
electrostatic stresses. These stresses arise from the electrostatic repulsion of free carriers and lattice charges and induce
small but significant elastic strain. This mechanism of strain through electrostatic repulsion is distinct from
electrostriction, which had been previously used to explain the bending of polymer films inside an electric field
(Watanabe, 2007). In electrostriction, lattice distortion is induced by the asymmetric rearrangement of otherwise
centrosymmetric ions under an electric field (Kay, 1955).

In the limit of uniform depletion ðHd ¼H;r¼ P0=HÞ, bending the nanoribbon with a constant curvature k decreases the
potential energy by approximately wP2

0H2k=24e33. For a non-piezoelectric crystal where only elasticity and electrostatics
contribute to the bending energy, analysis predicts a bending curvature of approximately k
 ¼ P2

0=Ye33H. General
expressions for the electrostatic energy in terms of Hd are presented in Appendix D.

A typical nanoribbon has width and thickness on the order of w¼ 50 nm, and H¼ 10 nm respectively. For Y ¼ C11�

C2
13=C33 ¼ 158 GPa, e33 ¼ 7:38� 10�11 F=m (Ding and Chen, 2001), and s¼ P0 ¼ 0:057 C=m2, it follows that R
 ¼ 1=k
 �

36mm. This is two orders of magnitude greater than the smallest values that have been measured experimentally.
Moreover, when bending with a radius of R¼ 1mm, the electrostatic energy decreases by approximately 10�11 J=m, which
is a factor of 30 less than the corresponding elastic strain energy. While electrostatics within the depletion layer may have
a role in nanoribbon bending, these results suggest that its contribution is small compared to that of piezoelectric coupling.
Nonetheless, it is a mechanism that may govern the deformation of non-piezoelectric ribbons and films.

7. Discussion

Spontaneous bending has been observed for ZnO and several other wurtzite-structured nanoribbons with 7 ð0 0 0 1Þ
faces. Several models have been proposed to explain this bending. Because bending in such materials necessarily involves
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Fig. 4. (a) Experimentally measured values (open circles) (Hughes and Wang, 2004) and theoretical predictions for the bending radius of curvature

(R) versus thickness (H) of ZnO nanoribbons. The solid and dotted lines represent the theoretical prediction of R¼ ZH=P0 for Z¼ 11:85 and 3:88 C=m2,

respectively. (b) Theoretical predictions based on the three depletion regimes: (solid black) n0 ¼ 1026 m-3 and Z¼ 11:85 C=m2, (dashed red) n0 ¼ 2� 1025

and Z¼ 11:85 C=m2, (dash-dot blue) n0 ¼ 2� 1025 and Z¼ 3:88 C=m2. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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many competing effects (including surface stress, elasticity, electrostatics, piezoelectricity, etc.), it has not been possible to
identify the dominant physics based on analyses of individual effects or small groups of effects. To address this issue, we
have performed a comprehensive thermodynamic analysis that simultaneously considers the contributions of elasticity,
surface stress, surface charge, space charge, spontaneous polarization, and piezoelectricity.

Surface stress is rejected as the main cause for bending since it is too weak to account for the magnitude of the observed
curvature and is not consistent with the observation that ZnO nanoribbons can bend towards either face. The piezoelectric
response generated by surface charge only cause the nanoribbon to change length but do not induce curvature. If space
charge is present, such as from the formation of a depletion layer, then electrostatics alone could lead to spontaneous
bending. However, the radius of curvature predicted by the depletion-induced electrostatic deflection model is one to two
orders of magnitude greater than the experimentally observed value. Hence, this mechanism would have at best a
secondary contribution to the spontaneous nanoribbon bending.

Space charge induced piezoelectric interaction is the only mechanism that explains the following experimental
observations: the magnitude and sign of the experimentally measured radii of curvature, how this curvature depends on
film thickness, and the dependency of curvature on dopant concentration. The good agreement between theory and
experiment is obtained with no adjustable parameters.

It is important to note that piezoelectric coupling is essential for space charge induced bending; elasticity or
electrostatics alone are not sufficient. Referring to Eq. (C.8), the parameter Z goes to 1 when the coupling coefficients gij

vanish. Though necessary, piezoelectricity alone is not sufficient-bending requires free charge carriers (that can move on
time scales that are experimentally relevant) and polarized surfaces to deplete those carriers from the interior. In the
absence of these properties, spontaneous bending is still possible but only under the much weaker surface stress
anisotropy effect.

Although there is strong support for the piezoelectric model in Section 6.1, there are still several open issues that must
be addressed. In particular, it would be useful to compare the magnitude and direction of bending with estimates of the
carrier concentration and type (n-type or p-type). This would confirm the theoretical prediction that p-type ribbons bend
towards the O-terminated face. There are also several areas in which the theoretical models can be improved. Broader and
more accurate predictions might be obtained by expanding the definition of electric displacement to include higher order
contributions such as electrostriction. Space charge distribution and characteristics of the anticipated depletion layer also
deserve further investigation, especially with respect to alternative mechanisms for surface stability such as charge
adsorption and surface reconstruction (Noguera, 2000).

8. Conclusion

The present analysis provides an appropriate framework to examine other non-planar nanoribbon geometries such as
nanosprings and helices and to incorporate the energetic contributions of lattice defects and crystal domain interfaces. In
addition to explaining the experimentally observed nanoribbon curvature, the thermodynamic analysis can be used to
address mechanical and electromechanical properties of piezoelectric nanoribbons such as the effective Young’s modulus
(Manoharan et al., 2008; Wang and Li, 2006), resonance, and bending induced power generation (Wang and Song, 2006).
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Appendix A. Derivation of governing thermodynamic equations

The variations (8) lead to the following variation in P:

dP¼
Z
B

@h

@ru
: rduþ

@h

@rF
� rdFþrdF

� �
dVþ

Z
@B

sdF�t̂ � du
� �

dS: ðA:1Þ

The above expression may be simplified first by noting that

@h

@ru
¼
@h

@c
:
@c
@ru

¼
1

2
T :

@ru

@ru
þ
@ru>

@ru

� �
)

@h

@ru
¼

1

2
TþT>
	 


¼ T ðA:2Þ
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and

@h

@rF
¼�

@h

@E
¼D: ðA:3Þ

(In (A.2), the derivation is only valid for an infinitesimal strain measure (1). Nonetheless, @h=@ru¼ T is generally true for
all elastic strain measures provided that T is defined as the first Piola–Kirchoff stress tensor.) Next, by the chain rule
(Bertram, 2005),

r � ðT � duÞ ¼ ðr � TÞ � duþT : rdu and r � ðD � dFÞ ¼ ðr � DÞdFþD � rdF: ðA:4Þ

Moreover, by the divergence theorem (and again noting that T¼ T>)Z
B
r � ðT � duÞdV ¼

Z
@B
ðT � nÞ � du dS and

Z
B
r � ðDdFÞdV ¼

Z
@B
ðD � nÞdFdS; ðA:5Þ

where n is the unit normal to B. Hence,

dP¼
Z
B
f�r � Tg � du dVþ

Z
@B
fT � n�t̂g � du dSþ

Z
B
f�r �DþrgdFdVþ

Z
@B
fsþD � ngdFdS: ðA:6Þ

Since du and dF are arbitrary, the variation dP vanishes if and only if the balance equations (9) and (10) are satisfied.

Appendix B. Solution for surface stress

Ignoring spontaneous polarization, surface charge, and space charge (i.e., P0 ¼ s¼ r¼ 0) it follows that D¼ 0. From the
constitutive relations (18) and (19), this implies E1 ¼ 0 and E3 ¼�ðg31=e33Þg11�ðg33=e33Þg33. In the absence of surface
traction, i.e., t̂ ¼ 0, the total potential energy of the system reduces to

P¼ �faðg0�kaÞ�fbðg0�kbÞþ

Z a

b
h dz

� �
wL; ðB:1Þ

where the enthalpy density is

h¼
1

2
C11þ

g2
31

e33

� �
ðg0�kzÞ2þ C11þ

g31g33

e33

� �
ðg0�kzÞg33þ

1

2
C11þ

g2
33

e33

� �
g2

33: ðB:2Þ

At equilibrium, P must be minimized with respect to g0, k, and g33 ¼ g33ðzÞ. First consider the minimization of P with
respect to g33, which implies @h=@g33 ¼ 0. Solving @h=@g33 ¼ 0 for g33 and substituting this expression for g33 into h yields
h¼ ð1=2ÞC ðg0�kzÞ2, where

C ¼ C11�
C2

13e33þ2C13g31g33�C33g2
31

e33C33þg2
33

: ðB:3Þ

For ZnO, C ¼ 175 GPa. Substituting h into P and integrating yields an algebraic expression for the potential energy. Lastly,
solving @P=@g0 ¼ 0 and @P=@k¼ 0 for g0 and k yields

g0 ¼
faþ fb

CH
and k¼ 6ðfb�faÞ

CH2
: ðB:4Þ

Appendix C. Derivation of nanoribbon stretch and curvature

Because of the spatial variation in r, the restriction (13) on the kinematics is no longer valid and should be regarded as a
first order approximation of a more complex deformation field. Governing equations are rederived by minimizing the total
potential energy P with respect to the free variables g0, k, g33 ¼ g33ðzÞ, and F¼FðzÞ.

In addition to the kinematic restriction (13), we also apply the restriction E1 ¼ 0, which follows from (17) and the
assumption that T13 = 0. Hence,

P¼ saFðaÞþsbFðbÞþ
Z a

z

Ldzþ

Z z


b
Ldz

� �
wL; ðC:1Þ

where z
 ¼H=2�Hd. The Lagrangian, L, is

L¼ 1
2 C11g2

11þC13g11g33þ
1
2 C33g2

33þg31F0g11þg33F0g33�
1
2e33F0

2
þP0F0 þrF; ðC:2Þ

where the prime denotes the derivative with respect to the coordinate z. The conditions for equilibrium thus become

@P
@g0

¼ 0;
@P
@k
¼ 0;

@L
@g33

¼ 0; dFP¼ 0: ðC:3Þ

The first two conditions in (C.3) imply the balance of stress and moment when integrated over the cross-section:R
T11 dz¼

R
T11z dz¼ 0. Following the Euler–Lagrange equation, the third condition implies plane stress: T33 ¼ 0. In order to
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evaluate the fourth condition in (C.3) we consider electrostatically admissible variations of the form

F-FþdF and F0-F0 þdF0: ðC:4Þ

It is assumed that F and F0 are not prescribed anywhere in or on the nanoribbon. This implies that the variations dF and
dF0 are arbitrary (though infinitesimally small) 8z 2 ½b; a�.6 The corresponding variation of P is evaluated using the calculus
of variations and Leibniz’s integration rule and vanishes when the boundary conditions and differential form of Gauss’s law
are satisfied in the Lagrangian (undeformed) description:

D3ðaÞ ¼ �sa; D3ðbÞ ¼ sb; D3ðz


þ Þ ¼D3ðz



�Þ;

dD3

dz
¼ r; ðC:5Þ

where wðz
7 Þ ¼ limt-0wðz
7tÞ.
Simultaneously solving the constitutive equations (16) and (19) along with the condition T33 ¼ 0 yield algebraic

expressions for g33 and E3 in terms of D3 and g11. Next, these expressions are substituted into (15) in order to calculate T11

in terms of g11 and D3. For g11 ¼ g0�kz, it follows from the balance laws
R

T11 dz¼ 0 and
R

T11z dz¼ 0 that

g0 ¼
P0

Z �
1

HZ

Z
a

D3 dz and k¼ 12

H3Z

Z
a

D3z dz; ðC:6Þ

where

D3ðzÞ ¼

Z z

a
rð~zÞd~z ðC:7Þ

and

Z¼
�2g31C13g33þC33g2

31þC11g2
33�e33C2

13þe33C33C11

C13g33�C33g31
: ðC:8Þ

For ZnO, Z¼ 11:85 C=m2.
If the ribbon has a thickness H4H2, then it is reasonable to assume that depletion will be limited to a surface layer of

thickness Hd �H2. Hence, the space charge density r¼ rðzÞ will be piecewise constant: r¼ r0 for z 2 a�Hd; aÞ, r¼ 0 for
z 2 ðb; a�HdÞ, sðaÞ ¼ r0Hd, and sðbÞ ¼ 0. The schematic in Fig. C.1 represents a piecewise constant approximation of the
space charge distribution r¼ rðzÞ for an n-type semiconductor (Sze, 1981). Here, Hd, Hi, and Ha denote the thickness of the
depletion, inversion, and accumulation layers, respectively. The strong band bending induced by spontaneous polarization
results in degenerate carrier densities in the inversion and accumulation layers with concentrations on the order of (Harris
et al., 2000)

nd ¼
1

3p2

2mqFs

‘ 2

� �3=2

: ðC:9Þ

Here, m¼ mme is the electron effective mass, me ¼ 9:109� 10�34 kg is the electron mass, Fs is the surface potential, and
‘ ¼ 1:054� 10�34 J=s is the reduced Planck’s constant. Using an approximate analytical method, Harris et al. (2000)
estimate that for GaN (P0 ¼ 0:029 C=m2, e33 ¼ 8:41� 10�11 F=m, and m¼ 0:22) Fs ¼ 0:47 V. Applying the same method to
ZnO ðP0 ¼ 0:057 C=m2, e33 ¼ 7:38� 10�11 F=m, and m¼ 0:19), we calculate Fs ¼ 0:91 V. Substituting this value into (C.9), the
electron and hole concentrations in the accumulation and inversion layers, respectively, are estimated to be on the order of
nd ¼ 3:8� 1026 m�3.
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Fig. C.1. Charge distribution for an n-type nanoribbon ðq¼ -1:6� 10-19 CÞ. The black regions at z¼ a and z¼ b represent surface charge. Near the z¼ a

surface is an inversion and depletion layer of thickness Hi and Hd , respectively. On the opposite side, near z¼ b is an accumulation layer of thickness Ha .

For large carrier concentrations (n0 � 1025
21027 m-3), an inversion layer is not expected to form (Sze, 1981).

6 If, for example, a potential Fa were prescribed at z¼ a¼H=2, then dFa ¼ 0 would be the only electrostatically admissible variation at that point.

Physically, this would require the presence of an electrode and power supply that could compensate for the additional energy needed to maintain the

prescribed potential. Such a condition will not be considered in the remaining analysis.
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Appendix D. Depletion-induced electrostatic deflection

As in the capacitor model of Section 5.1, Q ¼ 2pwRs represents the effective surface charge associated with surface
polarity and s¼ P0 is the effective sheet charge density on the Zn-terminated surface ðz¼H=2Þ. For a depletion layer of
thickness Hd, the surface polarity is fully neutralized with a space charge density r0 ¼ s=Hd.

When planar and in the absence of piezoelectric coupling, charge depletion results in an internal electric field
E3ðzÞ ¼ s=e33 for z 2 ½�H=2;H=2�Hd� and E3ðzÞ ¼ sðz�H=2Þ=e33Hd for z 2 ½H=2�Hd;H=2�. The electrostatic energy per unit
length along the nanoribbon is

f1 ¼

Z H=2

�H=2

1

2
e33E3ðzÞ

2w dz¼
s2w

2e33
ðH�HdÞþ

Z H=2

H=2�Hd

1

2
e33E3ðzÞ

2w dz: ðD:1Þ

When forming a ring of radius R, the internal electric field becomes E3ðrÞ ¼ sRðR�H=2�rÞ=e33Hdr for r 2

½R�H=2;R�H=2þHd� in the depletion layer, and E3ðrÞ ¼ sR=e33r for r 2 ½R�H=2þHd;RþH=2�. Here, r 2 ½R�H=2;RþH=2� is
the radial coordinate originating from the center of the nanoring. In this case, the electrostatic energy per unit length is

f2 ¼

Z RþH=2

R�H=2

1

2
e33E3ðrÞ

2w dr¼

Z R�H=2þHd

R�H=2

1

2
e33E3ðrÞ

2w drþ
s2Rw

2e33
ln

RþH=2

R�H=2þHd

� �
: ðD:2Þ

Noting that H=R51, it follows that to order OððH=RÞ2Þ, the change in electrostatic energy per unit length is approximately

Df¼f2�f1 �
s2wR

2e33
�

Hd

3H
þ

1

4

Hd

H

� �2
( )

H

R

� �2

: ðD:3Þ
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