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Attachment of fiber array adhesive through side contact
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Very slender cylindrical fibers are capable of bending over and maintaining side contact with an
opposing substrate even as the fibers are pulled away, providing a mode of adhesion for fiber array
adhesives. This paper analyzes side contact and its effect on normal adhesion and provides
guidelines for fiber length to achieve side contact under zero load as a function of elastic modulus,
area moment of inertia, initial geometry, and energy of adhesion between fiber and substrate.
Numerical results for several relevant geometries are presented as well as a comparison to recently
reported normal adhesion measurements of multiwalled carbon nanotube arrays. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2128697�
I. INTRODUCTION

The dry adhesive systems of geckos and anoles consist
of arrays of hierarchically structured hairs called setae. Re-
cent work has identified van der Waals as the primary adhe-
sive forces in these systems.1,2 Made from keratin, a stiff
material �elastic modulus E�3–15 GPa�, the micro- and
nanostructures of the setae create a low effective modulus for
the array,3–5 as well as provide a “self-cleaning” property.6

These natural adhesive systems have motivated recent papers
on analysis and synthesis of fiber array adhesives.3–5,7–14

From this work emerged perhaps the most important factor
for effective adhesion, that each fiber attachment must pro-
duce a “long bond.”3,8 This allows for load sharing among
multiple fiber attachments without some detaching prema-
turely during pulloff due to misalignments or surface irregu-
larities. Long bonds can be achieved, for example, by an-
gling the fibers so that they bend in a cantilever mode7 or by
using curved fibers which straighten under tensile load.3

The current paper explores another mechanism for
achieving long bonds, using simple cylindrical fibers with a
very high aspect ratio, for example, the 0.2-�m-diam,
60 �m epoxy fibers in Ref. 8. Under a large enough com-
pressive preload, such a fiber will bend and contact an op-
posing substrate on its side, as illustrated in Fig. 1, a con-
figuration henceforth referred to as “side contact.” Due to
surface forces between the fiber and opposing substrate, side
contact can be stable even as the fiber is being pulled from
the substrate. Indeed, recent measurements of normal adhe-
sion for an array of carbon nanotubes15 were found to concur
with the side contact model’s predictions, as discussed in
Sec. III. Though fiber array adhesives are bioinspired, the
side contact mode of adhesion is distinct from that used by
gecko setae, where contact is generally limited to the plate-
like spatulae at the tips.

II. ANALYSIS

This section analyzes the behavior of a single slender
fiber pushed against an opposing flat substrate. The fiber’s

a�
Electronic mail: cmajidi@eecs.berkeley.edu

0021-8979/2005/98�10�/103521/5/$22.50 98, 10352

Downloaded 01 Dec 2008 to 128.112.140.82. Redistribution subject to
loading cycle begins with a preload Pi�0 that pushes the
fiber into an opposing flat substrate causing side contact �Fig.
1�c��. The preload is then relaxed to a continuous load P
� Pi �Fig. 1�d��. If slender enough, a fiber will maintain side
contact even when P is negative. The fiber exhibits contact
hysteresis analogous to that seen in the Johnson-Kendall-
Roberts �JKR� model for adhering elastic spheres.16 The

FIG. 1. Loading cycle and qualitative fiber shapes for a fiber completely
clamped to a laterally unconstrained and laterally constrained support. �a�
Initial configuration. �b� Fiber tip at angle � /2, side contact begins, tip no
longer slides relative to opposing substrate. �c� Maximum value of preload

Pi. �d� Preload relaxed to continuous load P, which can be negative.
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analysis predicts contact length between the fiber and the
opposing substrate under continuous load P, from which fi-
ber pulloff force can be determined.

The fiber is treated as an elastica of length L, radius R,
and elastic modulus E, subject to an external applied load P.
Elastica assumes inextensible planar deformation, which was
checked to hold for the geometry and loads considered in
this paper. The energy method used to determine fiber bend-
ing is similar to that used in Ref. 17, which studied the
self-adhesion of a folded thin film.

As shown in Fig. 2, the function ��s� is defined to be the
fiber slope at a distance s along the fiber from its base. Con-
tact is made with an adhering flat along the segment �a ,L�,
while �0,a� is the unattached portion of the fiber.

A. Preload

During preload, we assume that the fiber slips freely
along the substrate until interfacial forces cause it to stick,
preventing further slipping. Let x denote the lateral deflection
of the fiber tip �relative to its base� corresponding to when
stick first occurs. For example, in the extreme case of no slip,
x=0, while for frictionless contact, x is undefined. In the
current analysis, the fiber tip is assumed to stick when side
contact begins, i.e., when ��L�=� /2 �see Fig. 1�b��, since
side contact provides increased contact area, which in turn
provides increased shear resistance. According to the govern-
ing equations for elastica, this configuration corresponds to a
lateral tip displacement of x=2p /k where p=sin�� /4�, k
=K�p� /L, and K�·� is the complete elliptic integral of the
second kind.18 Carrying out the computation, it is found that

x = ��2/K�1/�2��L = 0.763L . �1�

As preload continues up to its maximum value Pi, the
fiber tip can no longer slide relative to the substrate and the
constraints on the support now play an important role. For
the laterally unconstrained case �Fig. 1, left�, the support will
continue to move laterally as the support approaches the sub-
strate. Alternatively, for the laterally constrained case �Fig. 1,
right�, the lateral displacement between the fiber tip and sup-
port remains constant at x as the support approaches the sub-
strate. �Note that the shape of a fiber with a laterally con-
strained support and frictionless contact with the opposing
substrate will be the same as that of a fiber with a laterally

FIG. 2. Deformation of an elastic fiber, completely clamped vertically at its
base, making contact with an adhering substrate over a length L−a.
unconstrained support and x as defined in �1�.� In practice,
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the array backing is typically free to move laterally in the
manner that best accommodates attachment. Due to the me-
chanical coupling of the fibers through the backing, the lat-
eral movement of individual fiber supports will be restricted,
but not necessarily to the extent that the lateral displacement
between the tip and support remains constant. The current
analysis separately examines constrained and unconstrained
supports, with the understanding that the actual behavior of
an individual fiber lies somewhere between these two cases.

B. Energy of adhesion per contact length �

A fiber sticks to an opposing substrate due to surface
forces. This interaction is characterized by �, the energy of
adhesion per unit contact length. When a cylinder lies on a
flat surface, as analyzed in Refs. 5 and 19, interfacial forces
between the fiber and substrate will cause the fiber cross
section to deform and make contact over a width 2c. Assum-
ing linear elasticity, the corresponding strain energy release
rate is found to be

G = �Ec3/32�1 − �2�R2, �2�

where � is Poisson’s ratio for the cylinder. Integrating G to
obtain the strain energy and adding the energy of adhesion,
the total potential energy per unit length of contact is

U�c� =
�Ec4

128�1 − �2�R2 − W�2c� . �3�

where W is the work of adhesion between the two surfaces.

For a stable attached equilibrium, �Û /�ĉ=0 and c�0,
which gives

ceq = 2�8W�1 − �2�R2

�E
�1/3

. �4�

The energy of adhesion per unit length for a cylinder in
contact with a flat is given by

� = − U�ceq� = 6� �1 − �2�R2W4

�E
�1/3

. �5�

C. Laterally constrained support

The fiber configuration at equilibrium is the one that
minimizes the total potential energy Utot. For the current sys-
tem, Utot is the sum of the elastic strain energy and the ad-
hesion potential minus the work of the external load,

Utot = 	
0

a �EI

2

 ��

ls
�2

+ P cos ��ds − ��L − a� , �6�

where I=�R4 /4 is the area moment of inertia. At equilib-
rium, Utot is minimized with respect to ��s� and a, subject to
the boundary conditions

��0� = 0 and ��a� = �/2 �7�

and the constraint that the lateral displacement between the
support and tip remain fixed, expressed as the isoperimetric

condition
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0

a

sin �ds = x − �L − a� = a − �1 −
�2

K�1/�2�
�L . �8�

Employing the method of Lagrangian multipliers,20 the
work to maintain the isoperimetric constraint �8� can be in-
cluded in the expression for potential energy, yielding

Utot = 	
0

a �EI

2

 ��

ls
�2

+ P cos � + � sin ��ds − ��L − a� ,

�9�

where the undetermined multiplier � is a constant. Physi-
cally, � is the lateral force transmitted by the support.

Introducing the nondimensional parameters

ŝ =
s

L
, â =

a

L
,

P̂ =
PL2

EI
, �̂ =

�L2

EI
,

�10�

�̂ =
�L2

EI
, Ûtot =

UtotL

EI
,

x̂ =
x

L
,

Eq. �9� can be rewritten as

Ûtot = 	
0

â �1

2

 ��

�ŝ
�2

+ P̂ cos � + �̂ sin ��dŝ − �̂�1 − â� .

�11�

Similarly, �8� becomes

	
0

â

sin �dŝ = â − �1 −
�2

K�1/�2�
� . �12�

To minimize �11� with respect to the function ��ŝ� it is
necessary only to minimize the integral term. Thus ��ŝ� must
satisfy the Euler-Lagrange equation,20

�2�

�ŝ2 = − P̂ sin � + �̂ cos � . �13�

This ordinary differential equation �ODE� with boundary
conditions given by �7� is solved numerically to determine

�=��ŝ , â , �̂�. Next, the isoperimetric condition �12� is used

to eliminate �̂, resulting in an expression �=��ŝ , â�. Lastly,
the value of â at equilibrium is defined as âeq

= �â� �0,1� :�Ûtot /�â=0. The fiber shape at equilibrium is
defined by �eq=��ŝ , âeq�.

D. Laterally unconstrained support

The analysis for the laterally unconstrained support pro-
ceeds similarly, minimizing potential energy �6� subject to
boundary conditions �7�, but in this case the isoperimetric
condition �8� is dropped. Thus, ��ŝ , â� must satisfy the Euler-

Lagrange equation,
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�2�

�ŝ2 = − P̂ sin � , �14�

for the boundary conditions �7�. As before, â at equilibrium

is âeq= �â� �0,1� :�Ûtot /�â=0, where now

Ûtot = 	
0

â �1

2

 ��

�ŝ
�2

+ P̂ cos ��dŝ − �̂�1 − â� . �15�

The fiber shape at equilibrium is defined by �eq=��ŝ , âeq�.
If no external applied load acts on the system, then

closed form solutions for �eq�ŝ� and âeq can be obtained.

Solving �14� for P̂=0, the fiber is found to form a circular
arc of radius â / �� /2�. Hence,

�Ûtot�P̂=0 = ��/2�2/2â − �̂�1 − â� . �16�

At equilibrium, �Ûtot /�â=0, which implies that âeq

= �� /2� /�2�̂. It is important to note that this value is inde-
pendent of the total length of the fiber but only holds if L
�aeq. Hence, for the laterally unconstrained support, finite
side contact under zero applied load is only possible when
the fiber length exceeds the critical value

Lcr =
�

2
� EI

2�
. �17�

E. Numerical solution

The relationship between the nondimensional external

applied load P̂ and the nondimensional contact length 1− â
was numerically computed for fibers with laterally con-
strained as well as laterally unconstrained support. The steps
for solving the constrained case will be described here. The
simpler unconstrained case follows an analogous procedure.

The nondimensional contact length 1− â resulting from a

nondimensional external applied load P̂ is determined by

finding â, ��ŝ�, and �̂ that minimize Ûtot while satisfying the
isoperimetric condition and boundary conditions. Given val-

ues of â and �̂, a boundary-value problem �BVP� solver can

be used to find ��ŝ , â , �̂� that satisfies the ODE �13� and
boundary conditions �7� given in Sec. II C. Then a zero
finder can be applied in conjunction with the BVP solver to

find �̂*�â� such that ��ŝ , â , �̂*�â�� satisfies the isoperimetric

constraint �12�. Now Ûtot �9� can be written as a function of

just â, and plotting Ûtot vs â reveals a convex dependency.
Numerical minimization is used to find âeq, the value of â

that minimizes Ûtot. Thus a nondimensional external applied

load P̂ results in a nondimensional contact length 1− âeq. In
addition, the equilibrium position of the fiber under nondi-

mensional external applied load P̂ is given by �eq�ŝ�
=��ŝ , âeq , �̂*�âeq��. All of the above tasks were implemented
in MATLAB6.5 �The Mathworks, Inc., 2002� using built-in
functions available in the optimization and BVP solver tool-

boxes.
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III. DISCUSSION

Figure 3 shows the dependence of nondimensional con-
tact length on the applied load parameter for both uncon-
strained and constrained fiber supports. Curves are plotted
for three representative values of the nondimensional adhe-
sion parameter �̂: 16.7, 35.4, and 54.1. The first two values
were specifically chosen to correspond to the epoxy fibers of
Ref. 8 and the multiwalled carbon nanotube �MWCNT� fi-
bers of Ref. 15, respectively.

The results in Fig. 3 clearly show that finite contact

length is possible even for P̂�0 when �̂ is sufficiently large.
For such systems, the dependency of contact length on ap-
plied load is analogous to that of contact area on applied load
for the sphere-flat model studied in the JKR theory. In par-
ticular, in the case that the support is laterally constrained,
there is a distinct maximum pulloff load, above which stable
contact is no longer possible �indicated by 	 in the figure�.

A. Inclined fibers

The analysis in the previous section presented only ver-
tical fibers, but inclined fibers are known to be important for
other modes of fiber array adhesion.5,7 The boundary condi-
tions in the analysis may be altered to allow for fibers ini-
tially inclined at �0, i.e., ��0�=�0. For the laterally con-
strained support, inclining the fiber also changes the lateral
displacement at which side contact begins, x, which appears
in the isoperimetric constraint �8�. For the unconstrained sup-
port, a closed form solution can be found for nondimensional
contact length under zero applied load as a function of angle
at the base, specifically

1 − â = 1 − ��/2 − �0�/�2�̂ . �18�

The dependency of the nondimensional contact length
1− â on �0 under zero applied load is plotted in Fig. 4 for
both constrained and unconstrained supports. Contact length
is significantly influenced by incline angle only when �̂ is
small �e.g., �̂=0.7�. Moreover, as illustrated by curve d in

FIG. 3. Dependency of nondimensional contact length 1− â on applied load

parameter P̂= PL2 /EI; curves a, b, and c correspond to a laterally uncon-
strained support with �̂=16.7, 35.4, and 54.1, respectively; curves ac, bc,
and cc correspond to a laterally constrained support with �̂=16.7, 35.4, and
54.1, respectively. The 	 denotes spontaneous detachment.
the figure, side contact for such fibers under zero load re-

Downloaded 01 Dec 2008 to 128.112.140.82. Redistribution subject to
quires an incline angle �0�0. Rewriting �18�, a fiber with
laterally unconstrained support and incline �0 can make finite
side contact under zero applied load only if its length exceed
the critical length,

Lcr = 
�

2
− �0�� EI

2�
. �19�

B. Shear resistance

In motivating the isoperimetric constraint for the case of
a laterally constrained support it was assumed that the fric-
tional forces associated with side contact were great enough
to prevent further horizontal translation of the fiber tip. Such
an assumption follows from the notion that the interfacial
shear resistance to sliding is linear with the real area of
contact,21–23

Fs = 
0Ar. �20�

One approximation for 
0 may be inferred from the interfa-
cial shear strength corresponding to pulling a carbon nano-
tube out of a polymer matrix, found to be on the order of
100 MPa.24 Side contact increases the contact area, given by
contact length times contact width, 2�L−a�ceq, where ceq is
given by �4�. One attractive outcome is the possibility that
side contact may provide friction enhancement. Indeed, shear
strength predictions following from �20� are extremely high.
Of course, another mode such as shear peeling may be a
more likely cause of shear failure, and so further investiga-
tion is required to predict the shear strength of an array of
fibers in side contact.

IV. APPLICATION TO MWCNT ARRAYS

The predictions of the current model compare favorably
with force measurements collected from an array of carbon
nanotubes that have been recently studied.15 Such an array
consists of MWCNTs of length L=5 �m and radius R
=7.5 nm with an array density of 3	1010 tubes/cm2. Previ-
ous experiments have shown that the energy of adhesion per
unit area for a MWCNT adsorbed on a glass substrate is

2 25

FIG. 4. Dependency of nondimensional contact length 1− â on inclined fiber
slope �0 for zero applied load. The curve labels are the same as for Fig. 3,
with the addition of curve d, which corresponds to a laterally unconstrained
support with �̂=0.7.
approximately 330 mJ/m . The radial modulus of an
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MWCNT is about Er=30 GPa,26 while the elastic modulus in
the axial direction is known to be much larger and here as-
sumed to be Ea=800 GPa. Lastly, a Poisson’s ratio of �
=0.3 is assumed.

Following from �5�, the energy of adhesion per unit
length of contact for a MWCNT is �=2.8 nJ/m, where the
radial modulus Er is used in place of E. Hence, �̂
=�L2 /EaI=35.4. As seen from Fig. 3, this corresponds to a
nondimensional applied load that can grow to be as large as
10.8. Multiplying this value by EI /L2 gives the absolute ten-
sile strength of a single fiber contact, 0.86 nN. Through pre-
liminary testing, Ref. 15 has observed a pulloff force of
4.8 N/cm2, which suggests an average peel strength of
0.16 nN/tube. One explanation for why this value is smaller
than theoretically predicted is that not all MWCNTs are
likely to experience their maximum allowable tensile load
simultaneously during array detachment. Another possible
reason has to do with cross-sectional stiffening caused by
residual stresses in the walls of the MWCNTs. In the case of
single-walled carbon nanotubes �SWCNTs�, it has been dem-
onstrated by Tang et al. that residual stresses restrict elastic
deformation of the cross section,27 limiting contact area un-
der surface forces. As a result, the adhesion �̂ of a nanotube
structure is expected to be less than that predicted in �5� for
a solid cylinder, leading to a peel strength that may be closer
to the experimental value.

V. CONCLUDING REMARKS

Adhesion through side contact is one possible mecha-
nism in which a fiber array adhesive can achieve load sharing
among its many contacts, enabling a large overall bond
strength. It follows from Sec. III A that side contact can be
achieved under zero load if L�Lcr. Hence, side contact can
be obtained with a long length, a low flexural rigidity, a large
energy of adhesion, or a large initial incline. Previous stud-
ies, however, have shown that the first three properties pro-
mote clumping between adjacent fibers,5,7,12 while the last
reduces the clearance between the array backing and sub-
strate and thus limits the ability to accommodate large sur-
face asperities.

The models for constrained and unconstrained supports
place bounds on the performance of individual fibers. Fibers
with unconstrained support perform better in terms of normal
adhesion, but constraints on the fiber support will arise in a
fiber array due to mechanical coupling through the array
backing. Thus, this analysis provides some insight into the
importance of compliance in the array backing in order to
decrease mechanical coupling between fibers. As a biological
example, the gecko’s lamellae, analogous to the array back-
ing, is a thin clothlike flap of skin that appears to provide
good compliance between individual setae.

Based on geometry and approximate surface energies, a
number of known working fiber adhesives would be pre-
dicted to use side contact, including the MWCNT of Ref. 15,
the epoxy fibers of Ref. 8, and the silicon nanowires of Ref.
28. Moreover, it was shown that the side contact mechanism
described here predicts bounds on the detachment forces that

are consistent with measurements on a MWCNT array. This
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correlation has been accomplished without fitting parameters
but provides only a rough estimate of performance. Future
work will include study of the shear adhesion of the
MWCNT. Future work should also explore the effects of
clumping5,12 or entanglement on adhesion in order to obtain
more accurate predictions.
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