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Adhesion Between Thin
Cylindrical Shells With Parallel
Axes
Energy principles are used to investigate the adhesion of two parallel thin cylindrical
shells under external compressive and tensile loads. The total energy of the system is
found by adding the strain energy of the deformed cylinder, the potential energy of the
external load, and the surface energy of the adhesion interface. The elastic solution is
obtained by linear elastic plate theory and a thermodynamic energy balance, and is
capable of portraying the measurable quantities of external load, stack height, contact
arc length, and deformed profile in the reversible process of loading-adhesion and
unloading-delamination. Several worked examples are given as illustrations. A limiting
case of adhering identical cylinders is shown to be consistent with recent model con-
structed by Tang et al. Such results are of particular importance in modeling the aggre-
gation of heterogeneous carbon nanotubes or cylindrical cells, where the contacting
microstructures have a different radius and/or bending stiffness.
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1 Introduction
The adhesion of thin-walled micro- and nanoscale structures

governs the functionality of many emerging technologies �1,2�.
Fabrication methods in nanotechnology include adhesion-
controlled manipulation and assembly of thin-walled structures
such as carbon nanotubes �CNTs� single fibers and bundles,
graphene sheets, and fullerenes �3�. Thin-film/thin-wall adhesion
also controls the stability and structural integrity of flexible nano-
electronics and microtruss structures, which are subject to stiction
and potential collapse under environment induced adhesion �e.g.,
meniscus formation at high relative humidity� �4,5�. Moreover,
there has been growing interest in the role of thin-walled adhesion
in biological and pathophysiological systems. Waste water treat-
ment relies on the adhesion-controlled aggregation of bacteria,
and the formation of biofilm �6� and cell-cell adhesion helps form
natural and prosthetic tissues �7�. Excessive adhesion causes
monocytes to bond to the aorta wall, which eventually obstructs
the vessels and leads to atherosclerotic plaques �8�, whereas lack
of adhesion results in the loss of synaptic contacts and gives rise
to Alzheimer disease �9�.

Developing insights and predictive models for these systems
requires an understanding of the mechanics of adhesion between
thin-walled structures as a result of intersurface forces such as
electrostatic, van der Waals interactions, and meniscus. To achieve
mechanical equilibrium, the adhesion energy must balance the
mechanical energies due to external load and structural deforma-
tion �10�. Notwithstanding the many existing and successful solid-
solid adhesion models, a new theory is needed to explicitly ad-
dress adhesion between thin-walled structures that are dissimilar
in stiffness, geometry, and dimension. Here, we consider one par-
ticular class of geometries: parallel, thin-walled cylinders with
dissimilar bending rigidity and radius. The new model has the
potential to be extended to other geometries, such as contacting
circular plates and thin-walled spheres �11�.

Virtually all existing adhesion models are based on the Hertz
contact theory. Because of geometrical incompatibility, exerting
an external load on two noninteracting spheres leads to a compres-
sive stress within the contact circle. Modifications to include in-
terfacial adhesion were later introduced by Johnson–Kendall–
Roberts �JKR�, Derjaguin–Muller–Toporov �DMT�, and Dugdale–
Barenblatt–Maugis �10�. In essence, the interfacial attraction
modifies the local deformation and introduces a tensile stress
around the largely compressive contact circle. Relationships be-
tween applied load, contact radius, and approach distance are veri-
fied in a wide range of materials and interfaces. The theory is
further extended to the adhesion of a solid sphere with a wavy
substrate �12,13�, a solid cylinder with a planar substrate, and
cylinders with parallel axes �14,15�. However, these models are
inadequate for thin shells in that the shell conforms to the sub-
strate geometry by deforming in plate-bending, membrane-
stretching, or mixed bending-stretching mode such that the notion
of central compression is excluded. New models are recently de-
veloped for freestanding planar circular membranes clamped at
the periphery and a planar substrate in the presence of finite range
intersurface attraction, though membrane deformation is con-
strained to membrane stretching and negligible bending
�4,16–20�.

Thin shell adhesion on a planar substrate has been investigated
extensively with numerical methods. Seifert �21� treated lipid
vesicles as shells, developed a mechanical model by balancing the
adhesion energy with Helfrich’s elastic bending, and constructed a
self-consistent theory for bounded and unbounded vesicles. Tang
et al. �22� and Glassmaker and Hui �23� constructed an elastic
model for two interacting CNTs that was consistent with molecu-
lar mechanics simulation. A critical shell radius is found below
which the contact remains a line: Rmin= �k /��1/2, where k is the
shell stiffness and � is the adhesion energy. Adams, Pamp, and
Majidi introduced the moment-discontinuity-method to analyze
the adhesion of intrinsically curved plates and beams to curved
substrates �24,25�. Springman and Bassani �26,27� adopted a nu-
merical method to probe a spherical capped shell attracted to a
planar substrate via a finite range Lennard-Jones potential, derived
the “pull-in” and “pull-off” events, and further extended their
model to wavy substrates under coupled chemomechanical inter-
actions.
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In this paper, we attempt to address the global deformation of
two elastic cylinders with parallel axis under the following as-
sumptions: �i� Both cylinders are hollow shells with infinite
length, �ii� bending is the dominant deformation mode, and �iii�
the intersurface attraction is effective at intimate contact conform-
ing to the JKR assumption �28�. A boundary condition is intro-
duced to represent the discontinuity in bending curvature at the
contact edge. This is an extension of the moment-discontinuity-
method �26,27� and is derived by minimizing the total potential
energy of the system with respect to the width or radius of the
contact zone. This boundary condition may also be derived using
methods of fracture mechanics such as the J-integral �23,29� and
the stress intensity factor �30�. However, in contrast to the current
analysis, these derivations are beyond the scope of conventional
plate and shell theory and require the evaluation of internal stress
and strain fields.

2 Model
Figure 1 shows two cylinders with natural undeformed radii R1

and R2 being pressed into contact and then separated. Figure 2
shows the curvilinear coordinates. Upon a compressive force F,
the cylinders deform to create a finite contact segment of arc
length 2a. As F becomes tensile �negative�, adhesion contact re-
mains until a critical pull-off load F0 is reached. A spontaneous
separation of the adherends follows that reduces a to zero.

Let s1 and s2 denote the arc lengths of the bottom and top
cylinders, respectively, measured from the cylinder poles. Sym-
metry about the vertical axis requires the left-half of the system to
be considered, and analysis is limited to L1=�R1 and L2=�R2.
Define

�1 = L1 − a and �2 = L2 − a �1�
corresponding to the arc length at which the bottom and top cyl-
inders make contact. In their natural configuration, the cylinders
are deflected by an angle

�1 = s1/R1 and �2 = − s2/R2 �2�
with respect to horizontal. Under an applied load, the deflection
increases by an angle �1 and �2 such that the final deflection is
�1+�1 and �2+�2.

2.1 Boundary Conditions. The angular deformations �1
=�1�s1� and �2=�2�s2� and arc length a must satisfy boundary
conditions that ensure both mirror symmetry about the vertical
axis and geometric compatibility between the cylinders along their
contact. Noting that �1�0�=�2�0�=�1�L1�=�2�L2�=0, it follows
that in order for symmetry to be preserved, the boundary condi-
tions

�1�0� = �2�0� = �1�L1� = �2�L2� = 0 �3�
must be satisfied. To ensure geometric compatibility and to pre-
vent interpenetration of the adhering surfaces, the two cylinders
must share the same shape along the length of contact. Referring
to Fig. 2�b�, this requires �− ��1+�1� to equal −��2+�2�−� for
all values of s1� ��1 ,L1� and s2� ��2 ,L2�, where s2=s1−�1+�2,

�1�s1� + �1�s1� = 2� + �2�s1 − �1 + �2� + �2�s1 − �1 + �2�, ∀ s1

� ��1,L1� �4�

Lastly, the deformations �1 and �2 must allow the cylinders to
form a close loop such that the isoperimetric constraints
�0

L1cos��1+�1�ds1=�0
L2cos��2+�2�ds2=0 are satisfied. In light of

the compatibility condition in Eq. �4�, this is equivalent to

�
0

�1

cos��1 + �1�ds1 =�
0

�2

cos��2 + �2�ds2

= −�
�1

L1

cos��1 + �1�ds1 �5�

At this point it is convenient to define

�a = ��1:s1 � ��1,L1�� �6�
This allows deformation to be represented by three independent
functions �1, �2, and �a on the domains �0,�1�, �0,�2�, and
��1 ,L1�, respectively. By introducing �a, the boundary conditions
reduce to

�1�0� = �2�0� = �a�L1� = 0 �7�

�a��1� = �1��1� = 2� + �2��2� + �2��2� − �1��1� �8�

�
0

�1

cos��1 + �1�ds1 =�
0

�2

cos��2 + �2�ds2

= −�
�1

L1

cos��1 + �a�ds1 �9�

It is important to note that these conditions explicitly prevent in-
terpenetration of the cylinders only along the contact zone �s1
� ��1 ,L1��.

2.2 Energy Functional. The cylindrical walls are treated as
inextensible elastica. Hence, extension and shear strains are ig-
nored and the elastic strain energy is limited to bending. Let k1
and k2 denote the dimensionless flexural rigidity of the bottom and
top cylinders, respectively, where both ki are normalized with re-
spect to the flexural rigidity of cylinder 1, D1=E1h1 /12�1−v1

2�,
with E1 the elastic modulus, v1 Poisson’s ratio, and h1 the wall
thickness. The total elastic strain energy of the system � can be

Fig. 1 Interactions between two cylindrical shells: „a… touch-
ing at a line contact without adhesion, „b… compressive defor-
mation with adhesion, and „c… tensile deformation with
adhesion

Fig. 2 Curvilinear coordinates
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decomposed into the segments corresponding to the domains
�0,�1�, �0,�2�, and ��1 ,L1� as follows:

�1 =�
0

�1 1

2
k1�1,1

2 ds1, �2 =�
0

�2 1

2
k2�2,2

2 ds2

�3 =�
�1

L1 	1

2
k1�a,1

2 +
1

2
k2
�a,1 +

1

R1
+

1

R2
�2�ds1 �10�

where �i,j =d�i /dsj. The total potential energy of the system � is
computed by combining these elastic strain energies with the work
Uf of the external load F, the virtual work U� of the isoperimetric
constraints in Eq. �9�, and the work of adhesion W=�a. That is,

� = �1 + �2 + �3 + Uf + U� − W �11�
where

UF =�
0

�1

F sin��1 + �1�ds1 −�
0

�2

F sin��2 + �2�ds2 �12�

and

U� =�
0

�1

�1 cos��1 + �1�ds1 +�
0

�2

�2 cos��2 + �2�ds2

+�
�1

L1

��1 + �2�cos��1 + �a�ds1 �13�

The Lagrangian multipliers �1 and �2 in Eq. �13� are unknown
constants and correspond to the internal “hoop” stress at the points
s1=s2=0. The total potential energy of the system may be ex-
pressed by the functional

� =�
0

�1 	1

2
k1�1,1

2 + F sin��1 + �1� + �1 cos��1 + �1��ds1

+�
0

�2 	1

2
k2�2,2

2 − F sin��2 + �2� + �2 cos��2 + �2��ds2

+�
�1

L1 	1

2
�k1 + k2��a,1

2 + k2�a,1
 1

R1
+

1

R2
� +

1

2
k2
 1

R1
+

1

R2
�2

+ ��1 + �2�cos��1 + �a� − ��ds1 �14�

3 Analysis
At equilibrium, the energy functional � must be stationary with

respect to kinematically admissible variations of the form

�1 = �1
� + 	�1, �2 = �2

� + 	�2, �a = �a
� + 	�a, a = a� + 	a

�15�

Here, 
� denotes the value of 
 at equilibrium and 	
 is an arbi-
trary but infinitesimally small variation from 
�. In the subsequent
analysis, it is convenient to define the Lagrangian densities

�1 = 1
2k1�1,1

2 + F sin��1 + �1� + �1 cos��1 + �1�

�2 = 1
2k2�2,2

2 − F sin��2 + �2� + �2 cos��2 + �2�

�a =
1

2
�k1 + k2��a,1

2 + k2�a,1
 1

R1
+

1

R2
� +

1

2
k2
 1

R1
+

1

R2
�2

+ ��1 + �2�cos��1 + �a� − � �16�

3.1 Balance Laws. Let 	�� denote the variation in � in-
duced by the first three variations in Eq. �15�. Employing the

calculus of variations and noting that the variations must be kine-
matically admissible, it is straightforward to show that 	�� van-
ishes if and only if the balance laws

��1

��1
−

d

ds1

 ��1

��1,1
� = 0,

��2

��2
−

d

ds2

 ��2

��2,2
� = 0,

��a

��a
−

d

ds1

 ��a

��a,1
� = 0 �17�

and natural boundary condition


 ��1

��1,1
�

s1=�1

+ 
 ��2

��2,2
�

s2=�2

− 
 ��a

��a,1
�

s1=�1

= 0 �18�

are satisfied �see Appendix A for derivation�. Equation �17� cor-
responds to the differential form of the moment balance along the
segments s1� �0,�1�, s2� �0,�2�, and s1� ��1 ,L1�, respectively,
while Eq. �18� corresponds to the moment balance at the edge of
the interface �s1=�1�.

Substituting the Lagrangian densities into Eq. �17� results in a
system of three second-order ordinary differential equations. Solv-
ing these will introduce six constants of integration
�c1 ,c2 , . . . ,c6�, resulting in altogether nine unknowns:
a ,�1 ,�2 ,c1 ,c2 , . . . ,c6. However, so far, we have presented only
eight linearly independent equations: the five boundary conditions
in Eqs. �7� and �8�, the two isoperimetric constraints in Eq. �9�,
and moment balance �18� at s1=�1 and s2=�2. In order to calculate
the unknown constants, a ninth linearly independent equation is
required. This is furnished by the fourth variation in Eq. �15� and
is presented in Sec. 3.2.

3.2 Jump Condition. The fourth variation in Eq. �15� results
in a variation of the potential energy that has the form 	�a
= �d� /da�	a. Since 	a is arbitrary, 	�a vanishes if and only if
d� /da=0. Employing Leibniz’ integration rule, the chain rule,
the balance laws in Eq. �17�, and the natural boundary condition
in Eq. �18�, it follows that d� /da=0 reduces to

��a�s1=�1
− ��1�s1=�1

− ��2�s2=�2
+ 
 ��1

��1,1
�

s1=�1

��1,1��1� − �a,1��1��

+ 
 ��2

��2,2
�

s2=�2

	�2,2��2� − �a,1��1� −
1

R1
−

1

R2
� = 0 �19�

Details of the derivation are provided in Appendix B. Jump con-
dition �19� provides the ninth equation necessary to complete the
system of linear equations needed to solve for the nine unknown
constants: a ,�1 ,�2 ,c1 ,c2 , . . . ,c6. Physically, Eq. �19� corresponds
to the balance of the work of adhesion with the elastic energy
release rate associated with variations of the arc length a from its
value at equilibrium.

3.3 Solution. The governing equations are derived by substi-
tuting the expressions for �1, �2, and �a into the above equa-
tions. A solution can easily be obtained by linearizing for small �1
and �2. This yields the following set of governing equations �see
Appendix C�:

k1�1,11 = F cos��1� − �1 sin��1� �20�

k2�2,22 = − F cos��2� − �2 sin��2� �21�

�k1 + k2��a,11 = − ��1 + �2�sin��1� �22�

Also, natural boundary condition �18� and jump condition �19�
imply
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k1��1,1��1� − �a,1��1��k2	�2,2��2� − �a,1��1� −
1

R1
−

1

R2
� = 0

�23�
and

1

2
k1��1,1��1� − �a,1��1��2 +

1

2
k2	�2,2��2� − �a,1��1� −

1

R1
−

1

R2
�2

= � �24�
respectively. As before, the kinematic boundary conditions are

�1�0� = �2�0� = �a�L1� = 0 �25�

�a��1� = �1��1� = 2� + �2��2� + �2��2� − �1��1� �26�
Lastly, linearization reduces the isoperimetric constraints to

�
0

�1

�cos��1� − �1 sin��1��ds1 =�
0

�2

�cos��2� − �2 sin��2��ds2

= −�
�1

L1

�cos��1� − �a sin��1��ds1

�27�
Solving balance equations �20�–�22� yields six constants of inte-
gration, c1 ,c2 , . . . ,c6. Hence, there are altogether nine unknowns:
a ,�1 ,�2 ,c1 ,c2 , . . . ,c6a, to be determined by substituting the solu-
tions to Eqs. �20�–�22� into Eqs. �23�–�27�. Consequently, there is
a system of nine equations with nine unknowns.

Numerical solutions to the system described in Eqs. �20�–�27�
are presented in Figs. 3–5. In all three sets of figures, �a� depicts
the deformation under a varying compressive load F, �b� the con-
tact length a as a function of F, and �c� F as a function of stack
height w. The results in �b� and �c� are provided for various values
of the adhesion energy �. Here, the compression distance, or the
change in height of the stacked cylinders �equilibrium stack height
minus the sum of undeformed cylinders� w, is defined as

w = 2�R1 + R2� −�
0

�1

sin��1 + �1�ds1 +�
0

�2

sin��2 + �2�ds2

�28�

The input parameters �k1 ,k2 ,R1 ,R2 ,� ,F� and calculated values
�a ,w� are all unitless.

4 Worked Examples
The governing equations are derived using the principle of

minimum potential energy. The potential energy functional com-
prises the strain energy created by elastic bending in both the
contacting and noncontacting portions of the cylinders, the poten-
tial energy of the external load F, and the work of adhesion to
expose new surfaces. Apart from the standard differential and
boundary forms of moment balance �17� and �18�, stationarity of
the potential energy functional furnishes a jump condition at the
edge �s1=�1 ,s2=�2� of contact zone �19�. A simpler jump condi-
tion had previously been derived for adhesion of a single cylinder
to a rigid, flat substrate, a result that has recently been shown to be
equivalent to a discontinuity in the internal moment �31,35�. The
jump condition in Eq. �19�, however, has more terms since it
concerns adhesion between two generally dissimilar thin-walled
cylinders. Moreover, it does not appear to correspond to a discon-
tinuity in internal moment and is instead related to a discontinuity
in material �configurational� forces or Eshelbian energy-
momentum.

4.1 Same Stiffness and Radii „k1=k2 ,R1=R2… . Figure 3�a�
shows the deformed cylinders with k1=k2=1 and R1=R2=1, un-
der the coupled action of an external compressive load and adhe-

sion with �=3. Both cylinders are flattened at their contact inter-
face and globally deformed to a pseudo-elliptic geometry, with the
lower pole of the bottom cylinder as the reference �s1=0�. The
deformation is symmetric with respect to the planar contact. In
this respect, the identical cylinders deform in a manner qualita-

Fig. 3 Adhesion between two identical cylindrical shells with
the same bending stiffness „k1=k2=1… and radii „R1=R2=1… un-
der a compressive load F for �=3 „unless indicated otherwise….
„a… Deformed profile with pole of bottom cylinder as reference.
„b… Half contact arc length as a function of compressive load.
„c… Change in stack height as a function of compressive load F
and contact length a, with the dashed line indicating line con-
tact „a=0… where adhesion has no influence on the interacting
cylinders.
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tively similar �but not equivalent� to the adhesion of a single cyl-
inder to a flat, rigid substrate. Figures 3�b� and 3�c� show the
mechanical responses a�F� and F�w� for a range of �. As F de-
creases, the contact shrinks and continues to be finite even when
the external load turns tensile �F�0�. When the tensile load
reaches the threshold, F0=min�F�, the contact vanishes �a=0� and

the two adhering cylinders snap, leading to pull-off. The critical
tensile load �negative F� increases with increasing �; e.g., F0��
=3�
−1.1 and F0��=5�=−2. Interestingly, F0��=1�=0 is pre-
dicted, implying that the work of adhesion is insufficient to cause
spontaneous adhesion of the two cylinders. A minimum compres-
sive load is necessary to make finite contact �a
0�. In reality,

Fig. 4 Adhesion between two cylindrical shells with the same
bending stiffness „k1=k2=1… but different radii „R1=1,R2=0.5…
under a compressive load F for �=3 „unless indicated other-
wise…. „a… Deformed profile. „b… Half contact arc length as a
function of compressive load. „c… Change in stack height as a
function of compressive load and contact length, with the
dashed line indicating line contact „a=0… where adhesion has
no influence.

Fig. 5 Adhesion between two cylindrical shells with the same
radii „R1=R2=1… but different bending stiffnesses „k1=1,k2
=0.5… under a compressive load F for �=3 „unless indicated
otherwise…. „a… Deformed profile. „b… Half arc contact length as
a function of compressive load. „c… Change in stack height as a
function of compressive load and contact length, with the
dashed line indicating line contact „a=0… where adhesion has
no influence.
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adhesion is the result of intersurface forces with finite range such
that the cylinders interact even in the absence of intimate contact
and a tensile load is always needed to separate the adherends. For
0���1, F0 is positive at a=0 such that adhesion is irrelevant for
0�F�F0 and � thus comprises the elastic deformation energy
and potential energy due to external load only. Physically, when F
falls below F0, the contact area remains a line �a=0� until w
reduces to zero. There exists a minimal critical cylinder radius
Rmin, below which the contact is always zero �to be discussed in
Sec. 5�. In Fig. 3�c�, the compression distance is always positive
�w
0� even in the absence of external load �F=0� as adhesion
compels the two cylinders. As the load turns tensile �F�0�, w
reduces further and the cylinder becomes more elongated about
the vertical axis until pull-off occurs at the termini of all curves.

4.2 Same Stiffness and Different Radii „k1=k2 ,R1=2R2… .
Figure 4�a� shows two dissimilar cylinders with k1=k2=1 but
R1=1 and R2=0.5. Here, the deformation about the curved contact
becomes asymmetric. Elastic deformation is mainly confined to
the larger cylinder even along the contact length. The relations
a�F� and F�w� are similar to Figs. 3�b� and 3�c� despite a shift in
F0. The F�w� for �=1 and 2 terminate as adhesion loses its influ-
ence on the cylinders.

4.3 Different Stiffness and Same Radii „k1=2k2 ,R1=R2… .
Figure 5�a� shows dissimilar cylinders with k1=1 and k2=0.5, but
R1=R2=1. The more compliant cylinder suffers from a larger de-
gree of deformation. For F=1, the change in angle �2 is as large
as 0.6 rad over much of the noncontacting portion. Hence, the
small angle approximation used to derive Eqs. �20�–�22� and �27�
is no longer suitable and the exact differential equation or higher
order approximation is necessary. Moreover, because of the
greater compliance, Figs. 5�b� and 5�c� are limited to ��3. For
larger �, the more compliant cylinder will spontaneously adhere to
the stiffer cylinder and undergo deformation angles �2 that are
well beyond the range of the small angle approximation.

4.4 Example of Carbon Nanotubes. A practical example is
the mechanical deformation of CNT in the presence of adhesion.
Though the proper computation should incorporate the crystallo-
graphic structure and orientation, we adopt the present continuum
model and compare the results with molecular simulation by Tang
et al. �22�. A comprehensive summary of published CNT materials
parameters is given by Tu and Ou-Yang �25�. According to Sears
and Batra �32�, an equivalent elastic tube representation of CNT
possesses sheet thickness h=0.1 nm, radius R=0.6 nm, and elas-
tic modulus E=3.0 TPa. In order to achieve a contact arc length
a=0.1 nm �17% of R�, an adhesion energy of �
1.0 J m−2 is
required, which is a reasonable estimate of the van der Waals
interactions. In the presence of water meniscus alone, �

0.144 J m−2, which falls below the critical adhesion energy ��,
the contact area is a line �a=0�, and the corresponding pull-off
load vanishes �F0=0�.

5 Discussion
It is worthwhile to compare the present model with the classical

JKR and DMT models for adhering solid spheres. For example,
the predicted pull-off force F0 is found to have a much stronger
dependence on the size �R� than stiffness �k�, in reminiscence of
�F0�JKR= �3 /2��R� and �F0�DMT=�R�, where both depend only
on the solid sphere dimension but not on materials stiffness. To
make a more rigorous comparison, the pull-off force is normalized
by �Reff� with Reff

−1=R1
−1+R2

−1 being the effective cylinder ra-
dius. Figure 6�a� presents R1=R2=1 and k1=1 for a range of k2.
In the limit of large �, F0 /�R� approaches an asymptote of ap-
proximately 1/4, independent of k1 and k2. On the other hand,
once the adhesion energy falls below a threshold of ��, pull-off
occurs at F0������=0. Despite the similarity with JKR, cylindri-

cal shells deviate significantly at small �. Figure 6�b� shows k1
=k2=1 and R1=1 for a range of R2. The monotonic increasing F0
again shows a minimum threshold with F0������=0, but there
does not exist a common threshold for large �. The fact that the
upper limit for each F0��� curve decreases with increasing R2
indicates that �i� the larger cylinder becomes more compliant and
thus requires a smaller pull-off force, and �ii� the pull-off depends
predominantly on the cylinder dimension alluding to the JKR
model.

A fundamental difference between the current model and JKR
is noted. A distinct feature of the JKR is the local deformation of
the adhering spheres at the contact circle. In essence, the com-
bined applied load and adhesion force press a sphere against a
rigid planar substrate to create a Hertz contact circle. While re-
taining the contact circle, the adhesion force is then removed and
replaced with a local deformation around the contact circle. This
is done by assuming that a circular punch in full contact with a
half elastic continuum pulls on the substrate giving rise to a linear
“relaxation” and reduction in the approach displacement. Proper
energy balance thus leads to a mechanical instability or pull-off at
a critical tensile applied load and a nonzero contact radius. Should
the essential relaxation be ignored, the contact circle always
shrinks to zero �one-point contact� at pull-off. In general, the char-
acteristic nonzero pull-off contact is expected in geometrically
incompatible surfaces �e.g., spheres�. Existing models for thin-
walled vesicles ignore local deformation and indeed predict zero
pull-off radius �33–35�, though it must be emphasized that deter-
mination of the exact pull-off radius proves to be quite elusive.
Nevertheless, our present model does not consider local deforma-

Fig. 6 Normalized pull-off strength F0 as a function of adhe-
sion energy �. „a… Same radius „R1=R2=1…, but different stiff-
ness with k1=1. „b… Same stiffness „k1=k2=1…, but different ra-
dii with R1=1.
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tion and the contact arc length must therefore reduce to zero �i.e.,
line contact� at pull-off. A comprehensive model is beyond the
scope of this paper.

The eccentric behavior of line contact �a=0� present at small
compressive external load �cf. Fig. 3�c�� is worth discussing.
Based on the assumption that carbon nanotubes are planar
graphene sheets folded into a cylindrical shell, Hui and co-
workers �22,23� used an alternative method to derive a minimum
cylindrical radius below which the adhesion contact remains a
line: Rmin= �k /��1/2 for R1=R2=R and k1=k2=k. Compliant cyl-
inders �small k� coupled with strong adhesion �large �� is more
prone to deformation and thus a small Rmin. The present model
considers cylinders are initially stress-free. To deduce the relation
between Rmin, k, and �, values of R and k are randomly chosen,
and the relation a�F� is then found for a range of �. The unique
curve intersecting the origin �a=0 and F=0� corresponds to the
value of ��Rmin�. For instance, in Fig. 3�b�, k=1 and Rmin=1;
therefore, �=1 because the corresponding a�F� intersects the ori-
gin. The numerical routine is repeated for a range of k and R
combinations. Notwithstanding the distinctly different assump-
tions and analyses in the two models, an excellent comparison
between our present model �data� and that of Hui and co-workers
�curves� is shown in Fig. 7 for Rmin as a function of k for specific
�. The consistency is expected because no matter the cylinders
possess an intrinsic stress, mechanical deformation to form the
planar contact area causes a compressive stress to build up within
the contact and immediately without, and thus raise the elastic
energy of the system from the ground state of undeformed geom-
etry. The current model is more general in the sense that dissimilar
cylinders with different stiffnesses and dimensions are considered.
Moreover, we deduce that the nonzero Rmin is a consequence of
the global deformation of the cylinders and the local deformation
within the contact arc length, instead of “a residual stress that
increases the stiffness of smaller diameter tubes” �22�.

Our present 2D cylindrical shell model sheds lights on the ad-
hesion of 3D structures. One application is in cell aggregation,
which is related to the formation and growth of natural, prosthetic,
and malignant tissues. The existing model in literature treats cells
as deformable solid spheres conforming to JKR theory. When
these free entities come into contact due to thermal collision and
vibration, interfacial adhesion occurs, followed by aggregation
and coagulation. It is again emphasized that cells are not solid
spheres but a viscoelastic cytoplasm encapsulated by a thin lipid
bilayer membrane �shell�. The present adhesion model properly
addresses the nature of coupled shell deformation and adhesion,
provides the constitutive relations between F, w, and a, and thus

yields the basis for a correct statistical portrayal of the Gibbs free
energy and partition function of the grand canonical ensemble
�36�. Immediate biomedical application is found in deriving the
physical thresholds for cell aggregation �e.g., concentration, di-
mension, and temperature�. Long-range surface forces can also be
incorporated into the present model such that the adhering sur-
faces sense the presence of their counterpart even prior to direct
contact, as shown in our latest work for freestanding membrane
clamped at the periphery adhering to a planar substrate �20�.

6 Conclusion
Using an energy balance, we derived the adhesion mechanics

for two interacting elastic cylindrical shells with ranges of bend-
ing stiffness, radii, and adhesion energy. Relationships are estab-
lished between the measurable quantities at equilibrium, namely,
applied load, stack height, contact length and deformed cylinder
profiles, and the quasistatic adhesion-delamination trajectories.
The graphs and trends presented have significant implications in
the adhesion of similar and dissimilar interfaces in micro-/
nanoshell structures. Such interactions are relevant to a variety of
systems in nanoscience and technology, life-sciences, and tissue
engineering.
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Appendix A
Following the definitions in Eqs. �14� and �16�, the total poten-

tial energy of the system may be expressed as

� =�
0

�1

�1ds1 +�
0

�2

�2ds2 +�
�1

L1

�ads1 �A1�

At equilibrium, � must be stationary with respect to variations in
�1, �2, and �a as well as their derivatives ��1,1, �2,2, and �a,1�.
Applying these variations simultaneously to � yields an expres-
sion of the form

	�� =�
0

�1 	 ��1

��1
	�1 +

��1

��1,1
	�1,1�ds1 +�

0

�2 	 ��2

��2
	�2

+
��2

��2,2
	�2,2�ds2 +�

�1

L1 	 ��a

��a
	�a +

��a

��a,1
	�a,1�ds1

�A2�
By the chain rule,

�
0

�1 	 ��1

��1,1
	�1,1�ds1

=�
0

�1 	 d

ds

 ��1

��1,1
	�1� −

d

ds

 ��1

��1,1
�	�1�ds1

= 
 ��1

��1,1
	�1�

s1=�1

− 
 ��1

��1,1
	�1�

s1=0

−�
0

�1 	 d

ds

 ��1

��1,1
�	�1�ds1 �A3�

Here, the operation �f�x=y denotes the value of f at x=y. Applying
this same identity to the other integrals in Eq. �A2�,

Fig. 7 Threshold radius for line contact „a=0… as function of
stiffness and adhesion energy. „Rmin= „k /�…1/2 for R1=R2=R and
k1=k2=k.…
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	�� = 
 ��1

��1,1
	�1�

s1=�1

− 
 ��1

��1,1
	�1�

s1=0

+�
0

�1 	 ��1

��1

−
d

ds

 ��1

��1,1
��	�1ds1
 ��2

��2,2
	�2�

s2=�2

− 
 ��2

��2,2
	�2�

s2=0

+�
0

�2 	 ��2

��2
−

d

ds

 ��2

��2,2
��	�2ds2
 ��a

��a,1
	�a�

s1=L1

− 
 ��a

��a,1
	�a�

s1=�1

+�
�1

L1 	 ��a

��a
−

d

ds

 ��a

��a,1
��	�ads1

�A4�

At equilibrium, 	�� must vanish for kinematically admissible
variations in �1, �2, and �a.

According to the boundary conditions in Eq. �7�, both �1�0�
=�2�0�=�a�L1�=0 and

�1�0� + 	�1�0� = �2�0� + 	�2�0� = �a�L1� + 	�a�L1� = 0

�A5�

must be satisfied. Clearly, this implies 	�1�0�=	�2�0�=	�a�L1�;
in other words, variations in the deflection �i must vanish at the
points si where �i is prescribed. Similarly, the boundary condi-
tions in Eq. �8� require that both the conditions

�a��1� = �1��1� = 2� + �2��2� + �2��2� − �1��1� �A6�

and

�a��1� + 	�a��1� = �1��1� + 	�1��1�

= 2� + �2��2� + 	�2��2� + �2��2� − �1��1�
�A7�

be satisfied. This implies 	�a��1�=	�1��1�=	�2��2�=	��. Sub-
stituting the boundary conditions expressions for 	�i into Eq.
�A4�,

	�� = 	
 ��1

��1,1
�

s1=�1

+ 
 ��2

��2,2
�

s2=�2

− 
 ��a

��a,1
�

s1=�1

�	��

+�
0

�1 	 ��1

��1
−

d

ds

 ��1

��1,1
��	�1ds1 +�

0

�2 	 ��2

��2

−
d

ds

 ��2

��2,2
��	�2ds2 +�

�1

L1 	 ��a

��a
−

d

ds

 ��a

��a,1
��	�ads1

�A8�

At this point, the variations 	��, 	�1, 	�2, and 	�a are all inde-
pendent and arbitrary. Hence, in order for 	�� to vanish, the
conditions

��1

��1
−

d

ds1

 ��1

��1,1
� = 0,

��2

��2
−

d

ds2

 ��2

��2,2
� = 0,

��a

��a
−

d

ds1

 ��a

��a,1
� = 0 �A9�


 ��1

��1,1
�

s1=�1

+ 
 ��2

��2,2
�

s2=�2

− 
 ��a

��a,1
�

s1=�1

= 0 �A10�

must be satisfied. It is important to note that boundary condition
�A10� results from simultaneously applying the first three varia-
tions in Eq. �15�. This is necessary since the variations are not
independent, but related through the boundary conditions �7� and
�8�. Failure to incorporate these conditions into the calculus of
variations would either eliminate kinematic constraints or intro-
duce nonexistent ones.

Appendix B
At equilibrium, � must be stationary with respect to variations

in a. Since 	a is arbitrary, the corresponding variation in �,
	�a= �d� /da�	a, vanishes if and only if d� /da=0. Since both �1
and �2 depend on a, d� /da must be evaluated using Leibniz’
integration rule

d�

da
= ��1�s1=�1

d�1

da
+ ��2�s2=�2

d�2

da
− ��a�s1=�1

d�1

da
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0

�1 	 ��1

��1

d�1

da

+
��1
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d�1,1
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�ds1 +�

0
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d�2

da
+

��2

��2,2

d�2,2

da
�ds2

+�
�1

L1 	 ��a

��a

d�a

da
+

��a

��a,1

d�a,1

da
�ds1 �B1�

In light of the balance law �17�,

�
0

�1 	 ��1

��1

d�1

da
+

��1

��1,1

d�1,1

da
�ds1

=�
0

�1 	 d

ds1

 ��1

��1,1
�d�1

da
+

��1

��1,1

d�1,1

da
�ds1

=�
0

�1 d

ds1
	 ��1

��1,1

d�1

da
�ds1

= 
 ��1

��1,1

d�1

da
�

s1=�1

− 
 ��1

��1,1

d�1

da
�

s1=0

�B2�

Applying this identity to the other two integrals in Eq. �B1� and
noting that d�1 /da=d�2 /da=−1,

d�

da
= ��a�s1=�1

− ��1�s1=�1
− ��2�s2=�2

+ 
 ��1

��1,1

d�1

da
�

s1=�1

− 
 ��1

��1,1

d�1

da
�

s1=0

+ 
 ��2

��2,2

d�2

da
�

s2=�2

− 
 ��2

��2,2

d�2

da
�

s2=0

+ 
 ��a

��a,1

d�a

da
�

s1=L

− 
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��a,1

d�a

da
�

s1=�1

�B3�

Next, by natural boundary condition �18�, d� /da reduces to

d�

da
= ��a�s1=�1

− ��1�s1=�1
− ��2�s2=�2

+ 	 ��1

��1,1

d�1

da
−

d�a

da
��

s1=�1

− 
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��1,1

d�1

da
�

s1=0

+ 
 ��2

��2,2
�

s2=�2

	
d�2

da
�

s2=�2

− 
d�a

da
�

s1=�1

�
− 
 ��2

��2,2

d�2

da
�

s2=0

+ 
 ��a

��a,1

d�a

da
�

s1=L1

�B4�

Equation �B4� represents the general expression for d� /da at
equilibrium. It can be further simplified by applying the boundary
conditions in Eqs. �7� and �8�, which restrict not only �1, �2, and
�a, but also their derivatives with respect to a. According to Eq.
�7�, �1, �2, and �a are all prescribed at s1=0, s2=0, and s1=L1,
respectively. Since these conditions must hold for all values of a,
the derivatives �d�1 /da�s1=0, �d�2 /da�s2=0, and �d�a /da�s1=L1
must equal zero. This is equivalent to the condition in the calculus
of variations that the variation of prescribed end points must van-
ish.
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In contrast, �d�1 /da�s1=�1
, �d�2 /da�s2=�2

, and �d�a /da�s1=�1
are

nonzero and must be computed using the boundary conditions in
Eq. �8�. According to Eq. �15� and the fundamental theorem of
calculus,

�1��1� = �1
���1� + 	�1��1� = �1

���1
�� − 	a�1,1

���1
�� + 	�1��1�

+ O�	a2� �B5�

where �1
�=L1−a� and a� is the value of a at equilibrium. Simi-

larly,

�a��1� = �a
���1

�� − 	a�a,1
���1

�� + 	�a��1� + O�	a2� �B6�
which, according to boundary condition �8�, must be equivalent to
�1��1�. Since 	a is infinitesimally small, terms of order O�	a2�
may be omitted and so the conditions �1��1�=�a��1� and
�1��1

��=�a��1
�� together imply

− 	a�1,1
���1

�� + 	�1��1� = − 	a�a,1
���1

�� + 	�a��1� �B7�

Dividing both sides by 	a, taking the limit as 	a→0, and then
rearranging terms,


d�a

da
�

s1=�1

− 
d�1

da
�

s1=�1

= �a,1��1� − �1,1��1� �B8�

where the asterisk denoting the value at equilibrium is henceforth
omitted. Using the same argument for �2��2�, it follows from Eq.
�8� that


d�a

da
�

s1=�1

− 
d�2

da
�

s2=�2

= �a,1��1� − �2,2��2� +
1

R1
+

1

R2

�B9�

Substituting this into Eq. �19� and setting d� /da equal to zero
yield the following jump condition at equilibrium:

��a�s1=�1
− ��1�s1=�1

− ��2�s2=�2
+ 
 ��1

��1,1
�

s1=�1

��1,1��1� − �a,1��1��

+ 
 ��2

��2,2
�

s2=�2

	�2,2��2� − �a,1��1� −
1

R1
−

1

R2
� = 0 �B10�

Appendix C
Assuming that the deflections �1, �2, and �a are small, the

Lagrangian densities may be approximated as

�1 = 1
2k1�1,1

2 + F�sin��1� + �1 cos��1�� + �1�cos��1� − �1 sin��1��

�2 = 1
2k2�2,2

2 − F�sin��2� + �2 cos��2�� + �2�cos��2� − �2 sin��2��

�a =
1

2
�k1 + k2��a,1

2 + k2�a,1
 1

R1
+

1

R2
� +

1

2
k2
 1

R1
+

1

R2
�2

+ ��1 + �2��cos��1� − �a sin��1�� − � �C1�
The balance equations are obtained by substituting these expres-
sions into the Euler–Lagrange differential equation �17�. This
yields

k1�1,11 = F cos��1� − �1 sin��1� �C2�

k2�2,22 = − F cos��2� − �2 sin��2� �C3�

�k1 + k2��a,11 = − ��1 + �2�sin��1� �C4�

where �i,j j =d2�i /dsj
2.
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