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Fig. 1. Pneumatically-actuated, soft, quadruped robot executing an undulatory gait. The composition of the surface influences the
direction of motion for the same undulatory pattern: (a)–(e) left to right on felt, (f)–(j) no displacement on polyethylene, (k)–(o) right
to left on wet gelatin.

∂�/∂κ = 0. Substituting the expressions for D, V, and ψ
into equation (1) and solving ∂�/∂κ = 0 for κ yields

κp = 6pH2c

Et3x
(3)

This corresponds to the new bending curvature when the air
chambers have a prescribed internal pressure p.

In addition to changing the bending curvature, filling the
chambers with compressed air also increases the flexural
rigidity of the pneu-net actuator. In the absence of com-
pressed air, the flexural rigidity is approximately equal to
the rigidity of the strain-limiting layer, i.e. D0 ≈ D. When
pressurized, the flexural rigidity increases to Dp = Dp( p),
which is determined by calculating the change in curvature
�κ = κ − κp induced by an externally applied bending
moment M. By definition

Dp = lim
M → 0

M

κ − κp
(4)

where κp is obtained from equation (3). The final curvature
κ is again determined by solving the equilibrium condition

∂�/∂κ = 0. However, now the expression for potential
energy must incorporate the contribution of the external
bending moment as well as the compressibility of the pres-
surized air that is sealed inside of the pneu-net chambers.
This analysis assumes that once inflated, the pneumatic
valves are closed and the sealed air obeys the ideal gas
law: pf V = pVp. Here, p is the prescribed pressure that
leads to the curvature κp in the absence of bending moment,
calculated in equation (3), and Vp is the corresponding air
chamber volume

Vp = 1

2
cκp

{(
κ−1

p + H
)2 − κ−2

p

}
w (5)

When a moment is applied, the actuator bends to a final
curvature κ , which leads to a new enclosed volume V
and a final pressure pf = pVp/V . The final curvature is
determined by minimizing the following potential energy

� = 1

2
Dκ2x − pVpln

(
V

Vp

)
− Mκx (6)
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Fig. 2. (a) Inflated pneu-net chambers in the limb of a soft
quadruped (Shepherd et al., 2011). Pneu-net chamber (b) before
and (c) after inflation.

where the expression for V is presented in equation (2).
Solving ∂�/∂κ = 0 for κ and performing a Taylor
expansion about M = 0 yields

κ ≈ κp + 6M

w

{
1

Et3
+ x

6cH3p + Et3x

}
+ O

[
M2

]
(7)

This implies

Dp = lim
M→0

M

κ − κp
= Ewt3( 6cH63p + Et3x)

12( 3cH3p + Et3x)
(8)

Next, performing a Taylor expansion about p = 0 implies
that for small and moderate pressures

Dp ≈ D +
{

cH3w

4x

}
p (9)

In summary, curvature and flexural rigidity have linear
and affine dependencies on pressure, respectively. That is
κp = αp and Dp ≈ D + ηp, where the fixed constants α =
6H2c/Et3x, D = Ewt3/12 and η = cH3w/4x are based on
the pneu-net design.

2.2. Friction model

We use Coulomb’s law to estimate the sliding friction
between the robot and the ground. This parameterization
is composed of a load- and area-controlled term, Vt and Vs,
respectively (Yoshizawa et al. 1993). The load-controlled
term is simply proportional to the vertical component N

of the reaction force and corresponds to Amonton’s clas-
sical law Vt = μN , where μ is the coefficient of friction.
The area-controlled term scales with the area A of contact:
Vs = τA, where the interfacial shear strength τ is a fixed
constant that is mostly governed by adhesion or mechanical
interlocking between the contacting surfaces.

Referring to the undulatory sequence in Figure 1(c), the
soft robot only makes ground contact at its two ends, which
are separated by a horizontal distance 
. As shown in
the figure, each end may either make point contact with
the ground or flatten to make “side contact” over a finite
length λ. For an end that is in point contact, the maximum
shear force that the interface can support is assumed to be
equal to Vt. For side contact, the interface has a maximum
sliding resistance of Vs = τA, where A = qλ and q is the
total width of the robot.

For each incremental change in the pressures pi, the dis-
placement of the soft robot is determined by the change
in the horizontal separation 
 between the two ends. In
general, 
 will be different than the value computed in
the previous time step. Therefore, in order to accommo-
date the current deformation, one or both ends of the robot
must slide. We assume that the end with the larger sliding
resistance remains anchored while the opposite end slides
to accommodate the total change in distance between the
two ends of the robot. When both ends have the same slid-
ing resistance (for example, when the robot only engages
in tip contact), the two ends are assumed to slide an equal
distance in opposite directions.

In order to model locomotion on felt and wet gelatin, we
examine the two extreme conditions {Vt = 0, τ = 1} and
{Vt = 1, τ = 0}. The first condition is appropriate for a non-
slippery surface like felt, in which sliding resistance scales
with the area of contact. In this case, the robot will anchor
itself along the length of side contact and pull in or push out
the actuated segment. Alternatively, for slippery surfaces
like wet gelatin, the second tribological condition is more
appropriate. In this case, the area of side contact is free
to slide and is dragged along by the point contact, which
digs into the surface and functions as an anchor. Lastly, for
locomotion on polyethylene, we assume that the interface
has frictional resistance to both tip and side contact and let
{Vt = 0.5, τ = 1}.

2.3. Method for modeling locomotion

Let the indices i = 1, 2, and 3, correspond to the left, mid-
dle, and right segments, respectively. When compressed air
is delivered to the ith segment, the segment will inflate on
one side and bend so that the neutral plane has a natu-
ral bending curvature κi = αpi and flexural rigidity Di =
D0 + ηpi. In addition to internal stress from the pressurized
air, each segment is also subject to a gravitational load w
as well as internal forces and moments transferred by the
attached segments. Together, these loads cause the pres-
surized segment to deflect elastically from the surface by
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Fig. 3. Simulated and experimental actuation sequence for seg-
ments i = 1, 2, 3.

a vertical distance yi that varies along the arclength s. We
determine the algebraic expression yi = yi( s) by solving the
balance laws and boundary conditions in elastic rod theory
for static equilibrium (see Appendix A for more details).

Assuming moderate deflections, the slope of each seg-
ment and its cosine are approximated as y′

i = dyi/ds
and 1− ( y′

i)
2 /2, respectively. Therefore, the two ends are

separated by a distance


 =
∫ L1

0

{
1 − 1

2
( y′

1)2

}
ds +

∫ L1+L2

L1

{
1 − 1

2
( y′

2)2

}
ds

+
∫ L

L1+L2

{
1 − 1

2

(
y′

3

)2
}

ds. (10)

Here, Li corresponds to the length of the ith segment and
L = L1 + L2 + L3. Solutions for yi are also used to estimate
the length λ along which each end of the robot makes con-
tact with the ground. As discussed in the previous section,
this is used to calculate the interfacial sliding resistance and
determine which end will slide in order to accommodate
changes in 
 at each time step.

We use Matlab R2009b (The Mathworks, Inc.) to cal-
culate and render the shape and displacement of the robot
for the sequence of pressures presented in Figure 3. The
simulation is quasi-static and the time steps correspond to
incremental changes in pressure. With this simulation, we
observe the gait of the soft robot over several undulatory
cycles and calculate the total lateral displacement � of the
robot’s leading end. This simulation also allows us to iden-
tify the peak values for pi and corresponding amplitude of
undulation that maximize � over a complete cycle.

3. Experimental method

We produce the robot by casting silicone elastomer
(EcoFlex 0030; Smooth-On, Inc.) in a three-dimensional
(3D), printed mold (Dimension Elite; Stratasys, Inc.) and
then sealing the casted features with a layer of addi-
tional elastomer and a relatively inextensible thin film
of poly(dimethylsiloxane) (PDMS) (Sylgard 184; Dow-
Corning) (Shepherd et al, 2011; Ilievski et al, 2011). Flexi-
ble pneumatic tubes deliver compressed air to each pneu-net
actuator. Air pressure is computer-controlled with indepen-
dently operated solenoid valves.

To achieve an undulatory gait, the three segments of the
robot are pressurized in succession from rear to front with 7
psi (0.5 atm) of pressure. Each segment is pressurized and
depressurized with the same sequence that is implemented
in the simulation (Figure 3). Shepherd et al. (2011) previ-
ously used a similar sequence to actuate a soft, quadruped
robot for undulatory locomotion on a rigid, flat surface.

Experiments are performed on flat substrates composed
of felt, polyethylene, and hydrated gelatin. For each of the
three substrates, the robot executes the same sequence of
undulatory motions. We record the motion using a video
camera and compare the relative position of the robot with
predictions obtained from theory at each stage of the actu-
ation sequence. Using this technique, we can establish the
displacement� and direction of travel after one undulatory
cycle.

4. Results and discussion

We performed the theoretical simulation for {Vt = 0, τ = 1},
{Vt = 0.5, τ = 1}, and {Vt = 1, τ = 0} in order to model
locomotion on felt, polyethylene, and wet gelatin, respec-
tively. In each simulation, the segments were actuated in a
staggered manner (Figure 3) that heuristically simulates the
two-anchor strategy for inchworm locomotion. The phase
lag between each segment introduces a temporal asymme-
try that allows the robot to translate by a finite amount by
the end of the undulatory cycle. We observed that the direc-
tion of this motion depends on the relative magnitude of the
coefficients Vt and τ .

Figure 4 presents the theoretical and experimental results
for locomotion on all three surfaces. The black and grey
lines correspond to the uninflated (passive) and inflated
(activated) segments, respectively. For locomotion on felt
{Vt = 0, τ = 1}, the robot will anchor itself along the length
of side contact and move from left to right, as shown in
Figure 4(a). Physically, this friction law implies that inter-
facial shear strength is strongly influenced by contact area
rather than pressure. On polyethylene, {Vt = 0.5, τ = 1}
and friction is governed by a combination of side and tip
contact. As segment 1 inflates, the left end of the robot
makes tip contact and initially slides to the right. However,
as the length of side contact in segments 2 and 3 decreases,
the friction at the tip Vt eventually exceeds Vs and the robot
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Fig. 4. Simulated and experimental locomotion of soft robot on
(a) felt, (b) polyethylene, and (c) wet gelatin using the actuation
sequence in Figure 3. On felt, friction scales with contact area and
the robot is anchored by the end that is flat against the surface. On
polyethylene, friction is alternately governed by tip and side con-
tact, resulting in zero net displacement. On wet gelatin, the surface
is slippery and the robot anchors itself at the point contact, where
the end digs into the substrate. The black and grey lines corre-
spond to the uninflated (passive) and inflated (activated) segments,
respectively.
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Fig. 5. Theoretical prediction for the maximum amplitude versus
final displacement after a single undulatory cycle on felt or gelatin.
Normalized with respect to the total length of the robot.

becomes anchored at its left end. During the complete undu-
latory cycle, the tip and side contacts alternate as kinematic
anchors and we observe no net displacement (Figure 4(b)).
Lastly, for locomotion on gelatin, the area of side contact is
free to slide {Vt = 1, τ = 0}. In this case, the robot will be
anchored at the tip contact and move to the left, as shown
in Figure 4(c). This case corresponds to an interfacial shear
strength that is controlled by static friction and depends on
pressure rather than area. In practice, this occurs when the
robot is able to dig into a soft and deformable surface.

As shown in Figure 5, our simulation predicts that dis-
placement on felt or gelatin is greatest when the undulatory
amplitude is approximately 25% of the robot’s length. When
the amplitude is less than this, the separation 
 remains
close to the natural length of the robot and the relative
displacement of the two ends at each time step will be negli-
gible. When the amplitude is much larger than this optimal
value, both ends of the robot remain in point contact over
most of the undulatory cycle and hence slide toward or away
from each other by the same amount.

Undulation results in relatively low contact pressures on
the ground, since the weight of the robot is distributed over
a large area relative to legged robots. This property enables
the robot to traverse soft and slippery surfaces like hydrated
gelatin. However, as demonstrated by the theory and exper-
iments, the tribological properties of the surface will gov-
ern the order in which the pneu-net actuators need to be
activated for forward motion. In order to traverse hetero-
geneous terrain, the robot must alter its undulatory gait in
order to adapt to variations in surface traction and rigid-
ity. For example, if the robot undulates from a non-slippery
(“felt-like”; Vt = 0, τ = 1) to a soft and slippery (“wet
gelatin-like”; Vt = 1, τ = 0) surface, then it will have
to reverse its actuation sequence (i.e. from 1 → 2 → 3 to
3→2→1) in order to maintain forward motion.

The theoretical model is based on linear beam theory,
Coulomb’s friction law, and a simplified energy analysis to
estimate the dependency of bending curvature and flexu-
ral rigidity on air pressure. This model accurately predicts
the direction of undulatory motion but has not been tested
to establish its accuracy in predicting step size and out-
of-plane deflection. In order to make detailed predictions
of the robot’s elastic deformation, we must revise the the-
ory to more accurately model ground contact and pneu-net
inflation. For point contacts, the theory should include the
influence of tip angle on sliding friction.

In order to more accurately predict κp = κp( p) and
Dp = Dp( p), we must relax the assumption that the sealing
membrane deflects into an arc and instead treat its curvature
as an additional unknown variable that minimizes poten-
tial energy. For large deflections, we should also relax the
assumption of linear beam deformation and solve yi = yi( s)
numerically with finite differencing methods. This modified
theory for bending curvature and flexural rigidity can be
validated by comparison with results obtained from exper-
imental measurement and finite element simulation. How-
ever, although relaxing these simplifying assumptions will
make the theory more accurate, it will eliminate the alge-
braic form of the solutions for κp, Dp, and yi and signifi-
cantly slow the simulation speed. For the current purpose
of examining the influence of surface traction, the simpli-
fied theory is adequate in capturing the primary physical
factors that govern locomotion.

This work demonstrates that tribological conditions at the
interface between the robot and ground can have a dra-
matic impact on locomotion. Understanding the relation-
ship between ground friction and locomotion is important
for developing simulation tools that will eventually inform
strategies for deterministic motion planning in environ-
ments that have a variety of surface conditions. However,
deterministic motion planning is challenging when sur-
face conditions are not known, rapidly changing, or highly
heterogeneous (with length scales at or below the body
length of the robot). In these “noisy” environments, the
control strategy must incorporate sensing, feedback, and
more robust models that account for dynamic and mixed
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surface conditions. Alternatively, the robot may have to
adopt alternative locomotion strategies such as walking
or crawling, which have previously been demonstrated for
the quadruped by Shepherd et al. (2011). These are espe-
cially necessary for surfaces (like the polyethylene sub-
strate in Figure 4(b); Vt = 0.5, τ = 1) on which the
soft robot cannot achieve the tractions required for forward
undulation.

Also, the theory and experiments are limited to smooth,
flat surfaces that can be modeled with Coulomb’s fric-
tion law. However, during field exploration, the robot may
encounter viscous or granular surfaces, such as oil slicks,
mud, and sand, which cannot be accurately modeled with
the theory in section 2.2. Instead, we will have to adopt a
tribological model that incorporates boundary lubrication,
hydrodynamic lubrication, or other modes of fluidic friction
and drag (Persson, 2000; Maladen et al., 2009). In addition
to fluidic and viscoelastic effects, the surface may be sticky
and require significant peel force to detach robot segments
that are in side contact. Adhesion requires a modified theory
that addresses the influence of peel resistance and adhesion-
controlled stability on the elastic deformation of the robot
(Majidi et al., 2012).

5. Conclusion

In summary, we have shown that the interfacial shear
strength and coefficient of friction of the surface on which
our soft robot undulates determines the direction of locomo-
tion. A predictive theoretical model based on friction laws
for a soft, undulating sheet has been presented. This model
may be implemented in order to control the motion and
maximize displacement of a soft, undulating robot along a
prescribed direction. In general, to drive the robot on soft
and slippery surfaces, pressurizing the segments from back
to front will move the robot forward and pressurizing the
segments from front to back will move the robot backwards.
In contrast, for higher traction surfaces, forward motion
requires actuation from back to front.

Future efforts will focus on more generalized modeling
methods that predict motion for a broader range of robot
designs, gaits, and surface conditions. These include crawl-
ing and rolling on flat and inclined surfaces and robots with
more than three body segments or multiple limbs that are
capable of turning and lateral motion. As in the present
analysis, these models must account for the governing role
of contact mechanics and friction on elastic deformation
and trajectory. We also plan to improve the theory for a
single pneu-net actuator and perform experimental valida-
tion along with comparisons to the results of finite element
analysis. Lastly, experimental validation of the prediction
in Figure 5 for optimal undulatory amplitude would pro-
vide further evidence of the theory that locomotion is gov-
erned by the competition between friction from tip and side
contact.
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Appendix A

The vertical deflection yi( s) along each segment is the solu-
tion to the balance equation d4yi/ds4 = −w/Di, where w is
the gravitational load (units = N/m). The balance equation
has the general solution

yi = − ws4

24Di
+ ais3

6
+ bis2

2
+ cis + di. (11)

Here ai, bi, ci, and di are constants of integration that are
determined by solving a system of boundary conditions.
Each of these sets of boundary conditions correspond to the
six contact modes presented in Figure 6.

At the start of each time step (when the values for pi are
updated), the constants in equation (8) are evaluated for the
following boundary conditions

y1( 0) = y3( L) = 0

y1( L1) = y2( L1)

y2( L1 + L2) = y3( L1 + L2),

y′
1( L1) = y′

2( L1)

y′
2( L1 + L2) = y′

3( L1 + L2)

y′′
1( 0) = κ1

y′′
3( L) = κ3

D1{y′′
1( L1) −κ1} = D2{y′′

2( L1) −κ2}
D2{y′′

2( L1 + L2) −κ2} = D3{y′′
3( L1 + L2) −κ3}

D1y′′′
1 ( L1) = D2y′′′

2 ( L1)

D2y′′′
2 ( L1 + L2) = D3y′′′

3 L1 + L2) .

The solutions {ai, bi, ci, di} are then substituted back into
equation (8) in order to obtain expressions for yi. If the seg-
ments deflect away from the surface at the two ends (i.e.

Fig. 6. Illustration of six contact modes in which at least one
segment is engaged in side contact. Each mode corresponds to a
unique set of boundary conditions.

y′
1(0)> 0 and y′

3( L)< 0), then the robot only makes tip
contact with the surface. Otherwise, the robot will engage in
one of the contact modes presented in Figure 6. We assume
that if y′

1(0)< 0 and |y′
1(0) | > |y′

3( L) |, then the robot is
engaged in modes i, ii, or iii. If, instead, y′

3( L)> 0 and
|y′

1( 0) | < |y′
3( L) |, then the robot is engaged in modes

iv, v, or vi. The mode of contact (i–vi) is determined by
examining each mode separately with the aid of Maple 13
(Waterloo Maple Inc.):

(i) The constants of integration {ai, bi, ci, di} and the
edge of side contact ξ are determined by solving
the 12 boundary conditions in equation (4) but with
y1(0) = 0 and y′′

1(0) = κ1 replaced by y1( ξ ) = 0 and
y′′

1( ξ ) = κ1, and adding the thirteenth boundary con-
dition y′

1( ξ ) = 0. This mode occurs if the solution for
ξ is positive and less than L1.

(ii) Solve {a2, b2, c2, d2, a3, b3, c3, d3, ξ} for the boundary
conditions y2( ξ ) = y3( L) = 0, y2( L1 +L2) = y3( L1 +
L2), y′

2( ξ ) = 0, y′
2( L1 + L2) = y′

3( L1 + L2), y′′
2( ξ ) =

κ2, y′′
3( L) = κ3, D2{y′′

2( L1 + L2) −κ2} = D3{y′′
3( L1 +

L2) −κ3}, D2y′′′
2 ( L1+L2) = D3y′′′

3 ( L1+L2). This mode
occurs if the solution for ξ is between L1 and L1 +L2.

(iii) Solve {a3, b3, c3, d3, ξ} for y3( ξ ) = y3( L) = y′
3

( ξ ) = 0 and y′′
3( ξ ) = y′′

3( L) = κ3. This mode occurs if
L1 + L2 < ξ < L.

(iv) Solve {a1, b1, c1, d1, ξ} for y1( 0) = y1( ξ ) = y′
1

( ξ ) = 0 and y′′
1( 0) = y′′

1( ξ ) = κ1. This mode occurs
if 0 < ξ < L1.

(v) Solve {a1, b1, c1, d1, a2, b2, c2, d2, ξ} for y1( 0) =
y2( ξ ) = 0, y1( L1) = y2( L1), y′

2( ξ ) = 0, y′
1( L1) =

y′
2( L1), y′′

1( 0) = κ1, y′′
2( ξ ) = κ2, D1{y′′

1( L1) −κ2} =
D2{y′′

2( L1) −κ2}, D1y′′′
1 ( L1) = D2y′′′

2 ( L1). This mode
occurs if L1 < ξ < L1 + L2.

(vi) Solve {ai, bi, ci, di} and ξ for the boundary conditions
in equation (4) but with y3( L) = 0 and y′′

3( L) = κ1

replaced by y3( ξ ) = 0 and y′′
3( ξ ) = κ3, and adding the

thirteenth boundary condition y′
3( ξ ) = 0. This mode

occurs if the solution for ξ is between L1 + L2 and L

For sets of modes {i, ii, iii} and {iv, v, vi}, the lengths of side
contact are defined as λ = ξ and λ = L − ξ , respec-
tively. Once the mode shape and the expressions for yi are
obtained, the global motion of the robot may be determined
by evaluating the horizontal distance 
 between the two
ends.




