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Gelation and mechanical response of patchy
rods†

Navid Kazem,a Carmel Majidib and Craig E. Maloney*c

We perform Brownian dynamics simulations to study the gelation of suspensions of attractive, rod-like

particles. We show that in detail the rod–rod surface interactions can dramatically affect the dynamics

of gelation and the structure and mechanics of the networks that form. If the attraction between the

rods is perfectly smooth along their length, they will collapse into compact bundles. If the attraction is

sufficiently corrugated or patchy, over time, a rigid space-spanning network will form. We study the

structure and mechanical properties of the networks that form as a function of the fraction of the surface,

f, that is allowed to bind. Surprisingly, the structural and mechanical properties are non-monotonic in f. At

low f, there are not a sufficient number of cross-linking sites to form networks. At high f, rods bundle and

form disconnected clusters. At intermediate f, robust networks form. The elastic modulus and yield stress

are both non-monotonic in the surface coverage. The stiffest and strongest networks show an essentially

homogeneous deformation under strain with rods re-orienting along the extensional axis. Weaker, more

clumpy networks at high f re-orient relatively little with strong non-affine deformation. These results

suggest design strategies for tailoring surface interactions between rods to yield rigid networks with

optimal mechanical properties.

1 Introduction
Rods often aggregate in suspension. The rods may be made out
of a broad array of materials: polymers, bio-polymers, viruses,
or inorganics (ceramics or metals). The competing driving
forces for dispersion and aggregation are also diverse: surface
charges, depletion interactions, van der Waals forces, etc. These
materials are important for a vast array of technologies (opto-
electronics,1–4 structural composites5–14 etc.), and naturally
occurring materials like xanthan gum15 and wood pulp.16 In some
cases, the rod aggregates form disconnected clusters which
enhance the viscosity of the suspension, but fail to gel into a solid.
In other cases, the aggregates form rigid, space-spanning networks,
and the suspension takes on solid-like properties. Despite the large
number of materials that fall into this class, structure formation
and resulting properties are still not well understood.

Rod network formation is a particularly interesting challenge.
Physical gelation is still not well understood even for spheres.17–20

Neither are the non-equilibrium and non-linear properties of even
purely repulsive rods.21–24 Network aggregation may be slow and

can display glass-like dynamics.25–27 The process can be effectively
athermal (binding energies are typically many times kT) and
controlled by kinetics, much like diffusion limited aggregation
(DLA), and understanding the equilibrium state will probably
not lead to a better understanding of the strongly out-of-
equilibrium aggregates.

In general, colloidal suspensions of uncharged particles are
unstable to aggregation. Much work has gone into stabilizing
uncharged rods by chemically functionalizing them with
grafted polymers or by introducing surfactants at appropriate
concentrations. Particular examples include: carbon nano-tubes
(CNTs),10–14,25,28–60 colloidal minerals like boehmite,26,61–67

inorganic nano-rods like gold,1–4,68–71 nanocrystalline cellu-
lose,8,9,72–77 and FD virus.7,61,78–82 Despite this large body of
experimental work, theory/simulation/modeling of structure
formation, dynamics, and response has been lacking. Some
previous theory/simulation results have focused on related
areas: detailed physical chemistry of surface interactions
between rods and adsorbing polymers;44,48,52,54 non-linear
rheology of hard, repulsive rods/fibers;22–24 non-linear rheology
of sticky rods;83 equilibrium phase behavior of attractive
rods;84,85 mechanical properties of statically-cross-linked networks
of rigid rods26,46 and semi-flexible fibers;86,87 diffusion limited
aggregation (DLA) of hard, attractive rods.88 However, surprisingly
little numerical work has focused on aggregation itself.

Our goal here is to introduce a minimal model for network
formation and mechanical response. We are interested in the
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regime where the inter-rod surface interactions are strong so
that the rods are effectively athermal and the rods are far above
the critical volume fraction necessary for the percolation of a
rigid network but still far below the isotropic to nematic
transition. One key insight we have gained in constructing a
minimal model is that in order for rigid networks to form, the
rods must have some sort of irregularity in the surface inter-
actions. If the attraction is uniform, in the regime of volume
fractions we study, the rods always aggregate into disconnected
clusters and can never form a spanning network or support a
static load. On the other hand, if the interactions are corrugated
or patchy, then the tendency for bundling is defeated and one
can, over time, form rigid, space-spanning networks.

In this work, we introduce a simple model for the patchiness
by distributing a number of attractive sites at random along
each rod. These discrete attractive sites may be thought of as
defects where stabilizing grafted or physically adsorbed polymers
are missing or at a locally low concentration. Alternatively, in
systems where attractive interactions are governed by the explicit
addition of ligands on the surface, we may consider the sticking
sites to be locations where there are ligands and the non-sticking
sites to be patches where ligands are missing. The central result is
that increasing the fraction, f, of the surface which is attractive has
a non-intuitive, non-montonic effect on the structure and
mechanics of the networks which form. For small f, there are
too few attractive sites along the rods to form robust networks.
As f increases, at first, the networks become increasingly rigid
and strong with more and more cross links between rods
at attractive sites and essentially a homogeneous structure.
However, as more and more of the surface become attractive,
branches of the networks become bundled, the structure
becomes more heterogeneous, there are fewer and fewer load
bearing paths, and the elastic modulus and yield stress go
down. Finally at large enough f, the networks completely fall
apart into disconnected bundles.

2 Models and protocols
In Fig. 1 we present our interaction model. We consider that a
fraction of the surface has been functionalized to prevent
attractive interactions, but the remaining fraction, f, remains
attractive. Rods of length L are treated as beads, spaced along a
line at a spacing a. Attractive sites along the rod are modeled
using a standard Lennard-Jones (LJ) interaction with characteristic
length, s, and energy, eLJ. Purely repulsive sites are modeled with
the Weeks–Chandler–Anderson (WCA) potential with the same s
and energy of eLJ/100.‡ Two rods can then bind only at sites that
are attractive on both rods. The dimensionless parameters in the
model are: L/s = 20 (aspect ratio), eLJ/kT = 10 (binding energy),
a/s = 0.4 (corrugation parameter), f E 0.02 (rod volume fraction),
f (fraction of surface which is attractive). For L/s = 20 and fE 0.02,
the system is well below the hard-rod nematic transition.85,89

We use a standard Brownian dynamics algorithm which neglects

hydrodynamic interactions between the rods. A more detailed
hydrodynamical treatment could be implemented using dissipative
particle dynamics or some other coarse-grained representation of
the solvent particles if desired. All lengths reported below are in
units of s, and all times in units of t, the diffusion time for a bead.

Since the bond strength is eLJ = 10kT, bonds will never break
once formed, and our systems can be considered athermal. In
this sense, the dynamics are similar to DLA.88 However, there is
a crucial distinction. In our model, once a cross-link forms,
rods are free to pivot. If there are adjacent attractive sites, the
cross-link may also slide. This is in contrast with DLA models
where particles are completely immobilized after first contact.
We have checked that the depth of the quench does not change
the structure or dynamics and obtain indistinguishable results
with eLJ = 20kT, 40kT, and 80kT.

Another issue is the role of corrugation. In Fig. 1, we show a
cartoon of the LJ and WCA beads spaced at a distance a. If a/sE 1,
the energy landscape is corrugated and there are large barriers to
sliding that scale with the bond strength. Even if two parallel LJ
rods are in contact, one would need to overcome a barrier to slide
them into the global energy minimum with perfect overlap. The
corrugation acts like an effective friction between the rods.16 On
one hand, one could consider it a discretization artifact. On the
other hand, real surface interactions could have some associated
static friction. For e = 10kT and L = 20s, the choice of a = 0.4s: (i)
enforces the ‘‘athermal’’ condition that a contact, once formed,
will never be broken and (ii) gives a small enough corrugation that
contacting rods will eventually slide into complete overlap.

Fig. 2a shows a configuration with low corrugation and uniform
attraction. This system shows a tendency for bundling in the
absence of explicit patchiness. Rods tend to come into complete
overlap. We have checked that for L = 20s, e = 10kT for larger bead
spacings the corrugation prohibits the rods from sliding (not
shown). For a = s, one forms well developed rigid networks with
little bundling even with nominally uniform attraction.

We perform all simulations using LAMMPS.90 LAMMPS has
built-in facilities for efficiently grouping particles into rigid
bodies and integrating the equations of motion subject to the
rigid body constraints. We used periodic boundary conditions
with cubic simulation cells of length Lcell = 3Lrod = 60s. We
initiate the runs by equilibrating a hard-rod fluid and then turn on
the attractive interactions at t = 0. Each run lasts for tmax E 5! 104t

Fig. 1 Schematic of the interaction model. Rods of length L are modeled
as a collection of beads along a line with spacing a. Blue beads are
attractive LJ particles with a characteristic length of s and interaction
strength eLJ. Red beads are repulsive WCA particles with s = sLJ and e = eLJ/100.
We denote the fraction of blue, binding beads as f.

‡ The purely repulsive WCA potential is simply the LJ potential cut off at the point
of zero force.
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and requires about one week of running time per system on one
core of a modern computing cluster. We perform multiple
independent simulations (typically 8) for each set of parameters
to improve statistics.

We define the static virial, Siab, associated with each rod via a
straightforward generalization of the Irving–Kirkwood expression.91

Siab ¼
@fi

@eab
¼ #

X

jai

Fijarijb (1)

where: (i) fi is the potential energy of the i-th rod; (ii) Fija ¼ #
@fij

@rija
is

the net force rod i exerts on rod j, and (iii) rijb is the separation
between the centers of rod i and rod j. Note that since the net force
on any bead is a pairwise sum over neighboring beads, the net
force on any rod can also be considered a pairwise sum over
neighboring rods. The total static virial, Sab ¼

P
i Siab, then

gives the total derivative of the potential energy with respect to a
homogeneous strain.

3 Structure and dynamics during
gelation
3.1 Structure

In Fig. 3, we show the structure factor, S(q), at various times
during gelation for f = 40% (typical of a rigid, strong network)
and f = 80% (approaching the bundling transition and rigidity
loss) at three different times: t = 5 ! 102t, t = 5 ! 103t, and
t = 5! 104t. To compute the scattering intensity, we simply take
the individual beads making up the rod to be point scatterers.

Ið~qÞ ¼ Sð~qÞ ¼ 1

N

X

i

expði~q &~riÞ

!!!!!

!!!!!

2

where -ri is the position of bead i and N is the total number of
beads in the system. S(q) is then an isotropic average of S(-q).
Note that we non-dimensionalize the wave vector by the rod
diameter rather than the rod length.§ Recall that we start from
an equilibrated hard-rod state. For spatially uncorrelated rods
with uniform uncorrelated orientation, S B q#1. Our data are
consistent with this behavior in the initial equilibrated hard-
rod state, but quickly depart from this as gelation proceeds. The
departure is largest and most rapid for the systems with the
highest f on the verge of bundling.

For any f, the structure has long-lived evolution. It is still
evolving at the longest times studied with systematically
increasing power at the smallest wavevector for all f. In Fig. 4,
we plot S(q) at long time for various f. For all f, the intermediate
regime for q between the bead scale q/2p E 1/s and the rod
scale, q/2p E 1/L, S(q) is significantly steeper than q#1. For
f o 60%, the spectra are difficult to distinguish from each other.
The slope is somewhere between #1 and #2 and is roughly
constant over the whole range of qs/2p. For f Z 70% For large f,
the slope is steeper than #2 for 1 ! 10#1 r qs/2p r 5 ! 10#1.

One might expect one of the several idealized behaviors for
rod networks.92,93 On very general grounds, at wavelengths
longer than the longest wavelength over which structure is
correlated, S(q) should become flat. At shorter wavelength,
one would expect the structure to look different in the cases
of rigid networks and disconnected clusters.

The idealized case of homogeneous rigid rod networks
consists of a single characteristic ‘‘pore size’’, xpore. xpore is
envisioned to be less than the rod length, L, and it decreases
with increasing volume fraction as the pore space closes.

Fig. 2 (a) Typical uniform (non-patchy), low corrugation (a = 0.4s)
configuration at long time. (b) Typical patchy (50% functionalized surface)
low corrugation (a = 0.4s) configuration at long time. The uniform system
forms disconnected clusters with fluid-like dynamics. The patchy system
forms a rigid, spanning network with finite shear modulus and yield stress.
Rods which are uniform but with stronger corrugation (a = s) not shown
may also form rigid, spanning structures with solid-like dynamics.

§ For L = 20s, qs/2p = 1/20 corresponds to the rod length.
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At high q where qxpore Z 2p, the structure factor displays the
characteristic shape for the rigid uncorrelated rods, S B q#1. At
longer wavelength, qxpore r 2p, the density becomes uncorrelated
and S B const. Fractal networks55,92,94 present an alternative
picture where there is no characteristic pore size and S(q)

follows a power law with a non-trivial exponent out to the
largest lengths.

At densities too low for gel formation, and for e c kT,
disconnected clusters are thought to form via DLA. In the
idealized case of fractal clusters, S(q) for qL { 1 scales like
S B q#D where D is the fractal dimension of the cluster,88 as in
the case of diffusion limited cluster formation of spheres.
Beyond the characteristic cluster size qxcluster o 2p, the density
becomes uncorrelated and Sconst. The fractal dimension
depends on the aspect ratio. Clusters of rods formed via DLA
with an aspect ratio near those studied here have D E 2.1.88

At late times, for all f, we never observe a clear plateau in S(q)
or any other characteristic scale indicating any sort of ‘‘pore’’ at
shorter wavelength than the rod length. The S(q) curve of the
more highly bundled systems at high f starts off with a high
slope in the qL E 2p regime and starts to slightly flatten at the
smallest q, but no clear plateau emerges for the system sizes
studied here. The more homogeneous networks have a roughly
constant slope between 1 and 2 throughout most of the range, and
we can essentially rule out the development of a characteristic pore
scale at nearby q. Our data for the more regular networks at low
f could be consistent with the fractal network models, while the
bundled networks at high f might be more in line with the
homogeneous rod network picture with xpore Z L. The emergence
of a characteristic scale could be a signature for the impending
network collapse. However, one should be careful in interpreting
this characteristic scale as a pore size; it might be better to think of
it as the characteristic scale of the bundles which form in the
disconnected state.

3.2 Dynamics

In Fig. 5, we plot the energy as a function of time for the
ensembles with various f. The potential energy, U, is normalized
by both eLJ and the total number of attractive beads, n, at the
given f. Recall, all simulations here were for a binding energy of
eLJ = 10kT. Because of the strong binding, the energy almost
always decreases as more and more links form. Because of these
essentially athermal dynamics, the normalized energy serves as
a simple proxy for the total number of attractive contacts.

Fig. 3 Structure factor, S(q), for rod networks at various waiting time: t = 0
(black), 5 ! 102t (green), 5 ! 103t (cyan), 5 ! 104t (blue). Fraction, f, of
attractive sites: (a) 40%, (b) 80%. The blue dashed lines are S B q#1 and S B q#2

for reference.

Fig. 4 Structure factor, S(q), for rod networks at various f for tw = 5! 104t.

Fig. 5 Energy vs. time for various f. The total energy is normalized by the
total number of attractive sites for any f.

Paper Soft Matter

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 1
0 

Se
pt

em
be

r 2
01

5.
 D

ow
nl

oa
de

d 
on

 2
6/

04
/2

01
6 

18
:5

3:
09

. 
 T

hi
s a

rti
cl

e 
is 

lic
en

se
d 

un
de

r a
 C

re
at

iv
e 

Co
m

m
on

s A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
Li

ce
nc

e.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1039/C5SM01845E


This journal is©The Royal Society of Chemistry 2015 Soft Matter, 2015, 11, 7877--7887 | 7881

Systems which have a value of more than #1 have fewer than
one bond on average for each potential binding site. Systems
that have a value of less than #4 have more than four bonds on
average for each potential binding site. This is a manifestation
of the thick bundles observed for the uniform rods in Fig. 2.

Note that the energy is still relaxing at the longest times
simulated, corresponding to t = 5 ! 104t. The slow relaxation is
reminiscent of glassy relaxation and logarithmic compaction in
granular tapping experiments.95,96 As the network becomes
increasingly slow and rigid, it becomes harder and harder
to find new crosslinking sites. Furthermore, in the systems with
relatively high f, there are large, discrete energy drops. In real
space, these events correspond to large restructuring events where
branches of the network effectively merge into thicker ones.

In Fig. 6, we plot the mean squared displacement (MSD) of rod
centers at various waiting time, tw for f = 10% and f = 40%. Fig. 7
shows the same MSD plots for f = 80% and f = 90%. The heavy
dashed line in the upper corner represents free diffusion of a single
bead. For f = 10%, for the very youngest systems, the MSD curves
start in a diffusive regime and show a flattening as clusters start to
form. Even for the oldest systems, the curves remain subdiffusive
at long time and never show any clear solid-like plateau at
intermediate time. Despite the lack of a plateau in the MSD
curve, as we show below, a rigid backbone has already developed,
and the system does have a well defined shear modulus.

At a slightly higher f, the MSD starts to develop a proper
plateau, at intermediate times, characteristic of a solid. At long
times, the MSD values depart from the plateau with a pronounced
sub-diffusive slope. This long time behavior is much like the lower
f systems which do not develop any plateau. As we show below, we
find little difference in the non-linear mechanical response when
comparing the systems with and without a plateau.

Above about f = 50%, a new trend emerges. The dynamics
becomes bursty for old systems. Consider the system with
f = 80%. The oldest sample shows an initial plateau. The plateau
is lower than the f = 40% system indicating increased stiffness at
intermediate times. But the f = 80% system shows a sudden
jump by almost two orders of magnitude at t# tw E 104t. In real
space these events correspond to large discrete reconfigurations
where large branches of the network reorient and merge with
others.¶ These bursts are direct manifestations of the large
energy drops observed above in Fig. 5. As f increases, the height
of the initial plateau is roughly constant. However, the jumps
corresponding to shifts in the plateau height become bigger in
magnitude indicating larger events.

Finally at a binding fraction above f = 90%, there is no longer
any solid-like MSD plateau. In real space, there is complete
bundling of rods and collapse of the network. The loading
curves we present below indicate that, in many – but not all – of
the members of the ensemble, the structure is no longer rigid
and has no low frequency storage modulus. These members of
the ensemble with disconnected clusters and no rigid backbone
give rise to essentially diffusive behavior with a diffusion coefficient
roughly 3 orders of magnitude below a free rod. We presume that if

we were able to run the simulation for a longer time, the diffusion
coefficient would go down even further as the disconnected clusters
continue to coarsen. We conjecture that once the characteristic
bundle size reaches the rod length, the bundles would start to
aggregate into clumps much like in conventional DLA of spherical
particles. Checking this conjecture would, of course, require
simulations at significantly longer lengthscales.

4 Non-linear mechanical response
In Fig. 8, we plot the axial stress vs. axial strain (in extension)
for various f. The networks are aged for the full t = 5 ! 104t and
then relaxed with a short zero temperature simulation to find a
nearby mechanical equilibrium state without allowing further
aging of the network. The networks are then loaded in an
athermal, quasi static protocol: the cell is slowly deformed
under a zero temperature Brownian dynamics. We deform the
systems along one axis of the box, x, such that the length of the
box on that axis, Lx = (1 + e)Lx0, where Lx0 is its initial length and
e is the axial strain. Note that in this loading protocol, we
neither preserve volume nor control the loads transverse to the

Fig. 6 Mean squared displacement vs. time for various waiting time, tw.
Red: tw = 5 ! 101t, magenta: tw = 2.5 ! 103t, cyan: tw = 5 ! 103t, blue:
tw = 1 ! 104t, green: tw = 2 ! 104t, black: tw = 4 ! 104t. Attractive site
coverage, (a) f = 10%, (b) f = 40%. The dashed line is the free-bead diffusion
curve, dr2 = (t # tw)/t, for reference.

¶ See videos in the ESI.†
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extension direction. Eight independent runs are conducted at
each f to improve statistics.

At all f, studied here, a rigid network forms in at least some
of the members of the ensemble. In Fig. 9, we show the full set
of 8 systems for f = 20% and f = 80%. After the initial gelation,

all the systems acquire a residual tensile stress. Upon deformation
the tensile stress increases linearly, with discrete drops at well
define strains. These events are reminiscent of the elementary
plastic yielding events observed in amorphous solids.97 Along any
one of the linear ramps, the deformation is completely reversible.
After (and only after) any of the load drops, the deformation
becomes irreversible, and the system does not revert to previous
configurations upon unloading.

The loading curves have a remarkable dependence on f. For
the lowest f there is a slight strain stiffening. The slope of the
loading curve goes up with strain. This is similar to what is seen
in spring networks98 where the imposed shearing activates
tension in branches of the network in initially unloaded,
floppy, strands. For f = 10%, the stress increases essentially
monotonically throughout the range of strain. In this sense, it
can be considered a tough, ductile material.

As f increases, the initial tensile stress and slope increase.
For f = 20%, the stress also reaches a long-time plateau.
However, it reaches this plateau, by about 10% strain, much
more quickly than the f = 10% system. The f = 40% is
qualitatively the same as f = 20%, but with an even sharper
crossover to the yield stress plateau at an even smaller strain of about
4%. By f = 60%, the loading curves start to change qualitatively. The
stress no longer monotonically increases. The f = 60% loading curve

Fig. 7 The same as Fig. 6 for (a) f = 80%, (b) f = 90%.

Fig. 8 Axial stress vs. strain for various f (20% through 90%). Stress is
calculated and shown by dividing conjugate static virial (Sxx) by the volume
(V). Deformation is axial extension along the ‘x’-axis, such that eyy = ezz = 0.

Fig. 9 Axial stress vs. strain for different systems in an ensemble with (a) f = 20%,
(b) f = 80%. Blue-dashed curve is the average of 8 systems shown in Fig. 8.
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exhibits a peak stress between about 5% and 10% strain with a slight
softening beyond that. The f = 80% system shows a peak stress
of roughly the same height and at roughly the same strain as the
f = 60% system, but with a dramatically larger softening.

Looking at the individual members of an ensemble, shown
in Fig. 9, gives more insight. At f = 20% all of the systems in the
ensemble are rigid. The fluctuations about the average stress in
steady shear are on the order of the average. The system with
the largest peak stress shows some softening upon approaching
to the steady state, but none of the others do. None of the
systems show any tendency for softening in the steady regime
and all systems remain rigid out to 30% strain.

At f = 80% the picture is qualitatively different. There are
much more dramatic fluctuations within the ensemble. One of
the 8 systems is not even rigid. Two of the rigid systems start
well below the ensemble average stress and are much less stiff.
These two systems do not show very much softening during
shear. In contrast, those systems that lie above the ensemble
average show a very pronounced softening after the peak stress.
By the end of the 30% strain interval, three systems, in addition
to the one which failed to percolate initially, have completely
failed. The picture which emerges is that, although these high
f systems are stiffer and stronger on average, they are much
more fragile and have a significantly lower strain threshold
before rigidity breaks down and the stress drops to zero.

The initial linear ramps in the loading curves allow us to
define an elastic modulus. In Fig. 10, we plot the elastic
modulus for various f. The error bars represent the variance
of the modulus across the members of the ensemble. At low f,
the modulus and fluctuations increase with increasing f.
Finally, at 80%, the modulus reaches a maximum and drops
dramatically to zero at larger f. This peak value of the modulus
occurs at roughly the same value of f where we first observe the
catastrophic softening behavior in steady shear.

In Fig. 11 and 12, we show orthographic projection in the
x–y and x–z planes of the rods during loading for f = 20% (below
optimal) and f = 80% (above optimal) for the initial relaxed
state, after loading to 15% and 30%. The rods are colored
according to Sxx, the component of the static virial conjugate

to the applied axial strain exx. Red indicates tension, blue
compression, and green unstressed rods.

There are dramatic differences between the two systems.
The f = 20% system is much more homogeneous with a well
dispersed, network which is globally isotropic. The red rods
supporting the large tensile loads at 30% strain tend to be
aligned along the extension axis. These same rods started in the
unsheared network with stresses that were smaller in magnitude
but still tensile in nature and with orientations which were
predominantly along the loading axis.

The f = 80% system is very different. In the unsheared state,
it shows significant bundling of rods (discussed above) and a
few thick network branches composed of these bundles. Much
of the network undergoes very little reorientation under shear
while only those branches oriented along the extension axis
undergo elongation. One would naively guess that the system
should be stronger because of the increased number of inter-
rod binding sites. However, it is actually weaker since there are
fewer network branches to support the applied load. The
resulting deformation is much less homogeneous.

In Fig. 13 and 14, we show the distribution of the angle-cosines
(for the angle of the rod with respect to the extension axis) at the
initial unstrained configuration and for a strain of 30% along with
the nematic order parameter, S = h3 cos2(y) # 1i/2. For f = 20%, S
increases smoothly and essentially monotonically throughout the
range, starting from around S = 0 and ending at around S = 7%.Fig. 10 Elastic modulus vs. f.

Fig. 11 Orthographic projection in the xy and xz planes of: (a and b)
unstrained, (c and d) 15% and (e and f) 30% strained configuration for
f = 20%. The extension axis, x, is horizontal. Rods are colored according to
the their contribution to the total Virial in the stretching direction, Sxx. Red
indicates tensile and blue compressive stresses.
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The f = 80% system has large fluctuations in S. The unsheared
systems show large fluctuations within the ensemble. This is due
to the perfect orientational ordering within bundles. Each bundle
has a given orientation. There are fewer independent orientations
over which to average, and the orientation distribution is subject to
small number statistics. S values have strong member-to-member
fluctuations within the ensemble.

We can attempt to understand the predominant value of the
slope of the S vs. e curves using a simple model where any rod is
just advected with the homogeneous, affine deformation. If we
assume that the component of the velocity of the tip of a rod
perpendicular to its length is equal to the homogeneous affine
flow field at that point, we get:

vy = # _eL cos(y)sin(y) (2)

Then we have:

vx ¼
d

dt
x ¼ _ex 1# x2

" #
(3)

where x, as usual, is the cosine of the angle the rod makes with
the extension axis. We assume that the whole orientation
distribution, P, is simply advected:

@P

@t
¼ # @

@x
vxPð Þ (4)

We can then write an equation for the second moment of the
distribution:

dhx2i
dt
¼ #

ð1

0
x2
@

@x
vxPð Þdx (5)

Assuming we start with an isotropic distribution P = 1, we get:

dhx2i
dt
¼ #_e

ð1

0
x2ð1# 3x2Þdx ¼ 4

15
_e (6)

and then

dS

de
¼ 3

2

dhx2i
dt

1

_e
¼ 2

5
: (7)

We see from Fig. 14 that the f = 20% system has a distribution

of initial slopes,
dS

de
, whose average is 0.37, just slightly less

than 2/5. The initial values of S show some scatter, and so do
the slopes, but all systems within the ensemble have their
rods re-oriented toward the extension axis. The basic picture
which emerges is that, for the well connected networks,
the rod orientations essentially follow the homogeneous
affine flow.

The f = 80% ensemble shows dramatically different behavior.
Within the ensemble, there is a broad distribution of initial values
of S due to the poor counting statistics associated with the
relatively few independently oriented thick network strands.
Many systems show strongly non-affine motion with hardly
any reorientation of rods at all. In these systems, a small number
of thick trunks of the load bearing network extend in response

Fig. 12 The same as Fig. 11, but for f = 80%.

Fig. 13 Distribution of orientation x = cos(yx) at a strain of 0% and 30% for
the systems with surface fraction (a) 20% and (b) 80%. cos(yx) is the cosine
of the angle the rod makes with the extensional axis.
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to the strain and eventually disconnect without appreciable
reorientation of rods. This suggests that strongly non-affine
behavior of S(e) might be taken as indicative of poor mechanical
properties and potential catastrophic failure after peak load.

5 Conclusions
We presented the results of a simple model for aggregation and
mechanical response of rod-like particles, and showed that the
networks that form depend on the details of the inter rod
interactions. If the rods were uniformly attractive with no
irregularity in the surface interactions, disconnected clusters
form. In our simple model, the rods were composed of beads
with a fraction, f, which were able to stick to other beads of the
attractive variety on other rods. We studied structure and
dynamics during gelation, and we then subjected the well-
aged gels to athermal quasi-static straining to probe the
mechanical robustness of the networks. We showed that inter-
mediate values of f gave optimal mechanical properties
(enhanced modulus, yield stress, and total strain to failure)
and dramatically different spatial structure and gelation

dynamics than the either low or high values of f. In this sense,
these results may be seen as providing guiding principles for
tailoring surface interactions between rods for optimal structural,
mechanical, or electronic properties.

The dynamical measurements during gelation are most
directly comparable to experiments by Chen et al. on NaDDBS-
stabilized single walled CNTs suspended in water.25 Chen
et al. used tracer diffusion and found a short-time diffusion
coefficient of roughly 1 mm2 s#1 after aging for tw = 10 minutes,
which was essentially a plateau in the MSD at a value of about
2 ! 10#3 mm2 after tw = 3 hours. The height of the plateau was
still decreasing at that time. There are striking similarities to
the MSD curves for our systems in the intermediate range of f.
In particular, the value of the MSD at the onset of the plateau
is reduced by about two orders of magnitude from the
early, tw - 0 limit, and this is consistent with the data from
our model.

The work presented here should be considered a first
step toward modeling the aggregation of nominally-stabilized
suspensions of rod-like particles. It opens up many directions
for future work. (i) As we have shown above, the structure shows
no characteristic length scale for the optimal systems at inter-
mediate f. Does one emerge just beyond the limited system
sizes studied here as in the conventional homogeneous rod
network picture,99 or does one have fractal structure out to the
longest lengths?55,92,94 Larger simulations are necessary. (ii) In
this study we have worked at a constant aspect ratio and
volume fraction well above the threshold for gel formation.
One would guess that the critical volume fraction, f, for gel
formation would be strongly dependent on f, with the more
bundled networks forming at higher f requiring higher f to gel.
The f dependence should be checked explicitly. (iii) The strong
system-to-system fluctuations within the ensemble at high f
(a few systems have zero modulus at f = 80%, while a few systems
have finite modulus at f = 90%) would indicate strong finite size
effects. Is there a phase transition underlying these effects, and
would there be a sharp transition fc with fc o 1 beyond which
no systems gel in the infinite size limit? In analogy with rigidity
percolation or jamming, one could plot the fraction of rigid
systems in the ensemble as a function of f for various system
sizes. One would expect, in general, a sigmoidal shape where
both the width and the location of the transition would depend
on system size. A finite size analysis is called for. (iv) There
should be a lower bound on f, below which there are too few
cross linking sites to form a network. Can we use arguments
from rigidity percolation to understand how the modulus in
the virgin, unstrained systems depends on the number of
cross linking sites and/or the number of active cross links
formed after gelation? (iv) We have shown that the systems at
intermediate f are extremely robust mechanically. They can
be strained to 30% at essentially constant stress with little
hardening or softening. In applications, such as flexible
electronics,100,101 it is crucial to understand the ultimate strain
the network can sustain before it falls apart, and it would be
very interesting to continue the simulations at intermediate f
out to larger strains and ultimate failure.

Fig. 14 Nematic order parameter, S, as a function of e, for the systems
with surface fraction (a) 20% and (b) 80%. The black solid line shows the
slope of Nematic order parameter versus e for rods deforming affinely with
the extension flow.

Soft Matter Paper

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 1
0 

Se
pt

em
be

r 2
01

5.
 D

ow
nl

oa
de

d 
on

 2
6/

04
/2

01
6 

18
:5

3:
09

. 
 T

hi
s a

rti
cl

e 
is 

lic
en

se
d 

un
de

r a
 C

re
at

iv
e 

Co
m

m
on

s A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
Li

ce
nc

e.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1039/C5SM01845E


7886 | Soft Matter, 2015, 11, 7877--7887 This journal is©The Royal Society of Chemistry 2015

Acknowledgements
This material is based upon the work supported by the National
Science Foundation under Award Numbers NSF-CMMI-1250199,
and the Air Force Office of Scientific Research under grant
number AFOSR FA9550-13-1-0123.

References
1 V. M. Cepak and C. R. Martin, J. Phys. Chem. B, 1998, 102,

9985–9990.
2 M. J. A. Hore and R. J. Composto, ACS Nano, 2010, 4,

6941–6949.
3 J. M. Romo-Herrera, R. A. Alvarez-Puebla and L. M. Liz-Marzan,

Nanoscale, 2011, 3, 1304–1315.
4 J. Vonnemann, N. Beziere, C. Böttcher, S. B. Riese, C. Kuehne,
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Lett., 2007, 7, 259–263.

70 R. A. Sperling and W. J. Parak, Philos. Trans. R. Soc., A,
2010, 368, 1333–1383.

71 L. Vigderman, B. P. Khanal and E. R. Zubarev, Adv. Mater.,
2012, 24, 4811–4841.

72 J. Araki, M. Wada, S. Kuga and T. Okano, Langmuir, 2000,
16, 2413–2415.

73 J. Araki, M. Wada and S. Kuga, Langmuir, 2001, 17, 21–27.
74 Y. Boluk, L. Zhao and V. Incani, Langmuir, 2012, 28,

6114–6123.
75 S. J. Eichhorn, Soft Matter, 2011, 7, 303.

76 Y. Habibi, L. A. Lucia and O. J. Rojas, Chem. Rev., 2010,
110, 3479–3500.

77 M. Hasani, E. D. Cranston, G. Westman and D. G. Gray,
Soft Matter, 2008, 4, 2238–2244.

78 Z. Dogic, K. R. Purdy, E. Grelet, M. Adams and S. Fraden, Phys.
Rev. E: Stat., Nonlinear, Soft Matter Phys., 2004, 69, 051702.

79 E. Grelet and S. Fraden, Phys. Rev. Lett., 2003, 90, 198302.
80 P. Holmqvist, M. Ratajczyk, G. Meier, H. Wensink and

M. Lettinga, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.,
2009, 80, 031402.

81 N. Krishna Reddy, Z. Zhang, M. Paul Lettinga, J. K. G. Dhont
and J. Vermant, J. Rheol., 2012, 56, 1153.

82 Z. K. Zhang, N. Krishna, M. P. Lettinga, J. Vermant and
E. Grelet, Langmuir, 2009, 25, 2437–2442.

83 M. Ripoll, P. Holmqvist, R. Winkler, G. Gompper, J. Dhont
and M. Lettinga, Phys. Rev. Lett., 2008, 101, 168302.

84 P. G. Bolhuis, A. Stroobants, D. Frenkel and H. N. W.
Lekkerkerker, J. Chem. Phys., 1997, 107, 1551.

85 P. Bolhuis and D. Frenkel, J. Chem. Phys., 1997, 106,
666–687.

86 M. Das, F. C. MacKintosh and A. J. Levine, Phys. Rev. Lett.,
2007, 99, 38101.

87 T. Zhang, J. M. Schwarz and M. Das, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2014, 90, 062139.

88 J. R. Rothenbuhler, J.-R. Huang, B. A. DiDonna, A. J. Levine
and T. G. Mason, Soft Matter, 2009, 5, 3639–3645.

89 P. G. Bolhuis, A. Stroobants, D. Frenkel and H. N. W.
Lekkerkerker, J. Chem. Phys., 1997, 107, 1551.

90 S. Plimpton, J. Comput. Phys., 1995, 117, 1–19.
91 M. P. Allen and D. J. Tildesley, Computer Simulation of

Liquids, Clarendon Press, New York, NY, USA, 1989.
92 A. P. Philipse and A. M. Wierenga, Langmuir, 1998, 14,

49–54.
93 M. J. Solomon and P. T. Spicer, Soft Matter, 2010, 6, 1391.
94 T. Chatterjee and R. Krishnamoorti, Soft Matter, 2013, 9,

9515–9529.
95 J. B. Knight, C. G. Fandrich, C. N. Lau, H. M. Jaeger and

S. R. Nagel, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat.
Interdiscip. Top., 1995, 51, 3957–3963.

96 E. R. Nowak, J. B. Knight, M. L. Povinelli, H. M. Jaeger and
S. R. Nagel, Powder Technol., 1997, 94, 79–83.

97 C. E. Maloney and A. Lemaı̂tre, Phys. Rev. E: Stat., Non-
linear, Soft Matter Phys., 2006, 74, 016118.

98 M. Wyart, H. Liang, A. Kabla and L. Mahadevan, Phys. Rev.
Lett., 2008, 101, 215501.

99 M. J. Solomon and P. T. Spicer, Soft Matter, 2010, 6, 1391.
100 K. H. Kim, M. Vural and M. F. Islam, Adv. Mater., 2011, 23,

2865–2869.
101 M. K. Shin, J. Oh, M. Lima, M. E. Kozlov, S. J. Kim and

R. H. Baughman, Adv. Mater., 2010, 22, 2663–2667.

Soft Matter Paper

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 1
0 

Se
pt

em
be

r 2
01

5.
 D

ow
nl

oa
de

d 
on

 2
6/

04
/2

01
6 

18
:5

3:
09

. 
 T

hi
s a

rti
cl

e 
is 

lic
en

se
d 

un
de

r a
 C

re
at

iv
e 

Co
m

m
on

s A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
Li

ce
nc

e.
View Article Online


	CrossMarkLinkButton: 


