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Tunable helical ribbons
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The helix angle, chirality, and radius of helical ribbons are predicted with a comprehensive,
three-dimensional analysis that incorporates elasticity, differential geometry, and variational
principles. In many biological and engineered systems, ribbon helicity is commonplace and may be
driven by surface stress, residual strain, and geometric or elastic mismatch between layers of a
laminated composite. Unless coincident with the principle geometric axes of the ribbon, these
anisotropies will lead to spontaneous, three-dimensional helical deformations. Analytical,
closed-form ribbon shape predictions are validated with table-top experiments. More generally, our
approach can be applied to develop materials and systems with tunable helical geometries. © 2011
American Institute of Physics. [doi:10.1063/1.3530441]

Helical ribbons represent an important class of two-
dimensional structures that often arise in biology"2 and
engineering.‘g_6 They exhibit unique shapes that cannot be
sufficiently described with one-dimensional theories of
helicity that are commonly applied to nonribbonlike struc-
tures such as DNA and mechanical springs7 or with classical
Stoney/Timoshenko approaches that are routinely applied
to beam/planar structures.® ™! A predictive model for the
mechanics and morphological stability of helical ribbons
represents a new and important tool for study and design
in such diverse technologies as drug delivery and
biosensing,12 B nanoengineered helices for optoelectronics,14
and microrobotics.'’

Typically, ribbon helicity is controlled by the balance of
surface stress or internal residual stress with restoring forces
induced by elastic stretching and bending. For quaternary
sterol solutions such as model bile, residual stress may be
induced by a mismatch in molecular packing between con-
stituent layers,12 while for nanoengineered helices, deforma-
tion is usually driven by epitaxial strains."* Moreover, at
least one of these mechanical elements (surface stress,16 re-
sidual strain, and elastic modulus*) must be anisotropic and
have a principle orientation that does not coincide with the
principle geometric axes (length, width, and thickness) of the
ribbon.

In this paper, we use elasticity theory, differential geom-
etry, and stationarity principles to predict the shape of helical
ribbons subject to either surface stress or residual strain. The
analytic predictions are in closed-form and are validated with
simple, table-top experiments in which layers of prestretched
elastic sheets are bonded together to form a laminated rib-
bon. The analysis identifies unique, mechanically stable mor-
phologies that cannot be explained with classical rod or plate
theories.
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In our work, the ribbon is defined as an elastic sheet with
length L, width w <L, and thickness H<<w. The ribbon has a
rectangular cross-section and principle geometric axes along
its length (d,), width (d,), and thickness (d,). These direc-
tions form an orthonormal triad of directors {dx,dy,dz} that
rotate with the ribbon as it bends and twists in space.

In the special case of planar bending, as is assumed in
the Stoney formula,® curvature is restricted to the (length-
wise) d, direction. For a helical ribbon, however, the ribbon
Will have principle curvatures «; and «, along the directors

=cos ¢d,—sin ¢d, and r,=sin ¢d,+cos ¢d, oriented at
an angle ¢ relative to d, within the plane of the ribbon—see
Fig. 1.

In a global Cartesian coordinate system, the {X,Y,Z}
coordinates of a point P on the centerline can be param-
etrized by the arclength s via X(s)=s—8?/a’(as—sin as),
Y(s)=/ a*(as—sin as)(k;—K,)sin ¢ cos ¢, and  Z(s)
=B/ a*(cos as—1), where a=1K} cos® ¢+ 3 sin> ¢ and S
=K, coS> ¢+k, sin’ .

In the presence of anisotropic bending curvatures, the
ribbon is subject to strains €,,, €,,, €, and € that are con-
sidered uniform throughout the d, direction of the ribbon
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FIG. 1. Illustration of a helical ribbon. The directors d, and d, are oriented
along the length and widthwise axes of the ribbon, respectively. The bases r;
and r, correspond to the principle directions of curvature.
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(assuming that the thickness w is relatively small compared
to the radii of curvature). Superimposing these yields a
strain tensor y= y,jd ®d](z, jeix, Y z}) with components
Yer= €t (K cOs? ¢+ K sin? @) +9y,(2). Vay= +Z(K2
—KI)SHI ¢ cos p+ yx‘(Z) Y= €,,+2(k; sin? ¢+ K, cos® )
+yyy(z) and y..= +zk3+y (z). Here, ze[-H/2,H/2] de-
notes the distance from the ribbon midplane, while ylj(z)
denotes an arbitrary residual strain within the (initially) flat
ribbon.

Let ¢* and ¢~ denote the orientation of the principle
axes of surface stress on the z=H/2 and z=—H/2 surfaces,
respectively. In contrast to ¢, which is an unknown, both ¢*
and ¢~ are predetermined by nature or during fabrication
(e.g., the principle axes of the surface stress tensor, f). On the
z=*H/2 surfaces, f has the form f"=f]e; ®e, +f;e,
®e;, where ey =cos ¢“d,—sin ¢"d, and e =sin ¢=d,
+cos ¢idv‘,. The potential energy density of the ribbon is

H/2

—y.C:ydz, (1)

m=f: ‘}’|z=—H/2 + f+17’|z=H/2 + f >
H2

where C is the fourth-order elastic constant tensor. It is im-
portant to note that for an elastically anisotropic ribbon, the
principle bases of C may not coincide with {d,.d,.d.}. At
equilibrium, IT must be stationary with respect to the un-
known parameters ki, Ky, k3, €, €yys Exy €1z and ¢. That is,
these values are the solutions to a set of linearly independent
equations dllI/dy=0, where y represents any one of the eight
unknowns. These solutions exist for arbitrary anisotropic
elastic constant tensor, residual strains, and surface stresses
on the two surfaces. However, such solutions can either be
very long or can only be evaluated numerically. We therefore
focus on a small set of interesting cases below.

A closed-form analytic solution can be obtained for the
special case of a homogeneous, elastically isotropic ribbon
with surface stresses on either one or two surfaces and no
internal residual strain. First, we consider a surface stress
only on the z=-H/2 surface of the form f =fle]®e]
+f,e, ®e,. The strain tensor is diagonalized in the orthogo-
nal coordinate system (e, €5, d.) such that the only non-
Zero strain components are y;; =€ +2K|, Y= €xn+2kK,, and
¥33= €33+ 2k;. The total potential energy is

EH? + 1 + k3)? 2 i+ i
M= |:V(K1 Ko+ k3)” (k) + K5 +k3) I’a

(-20(1+v) " 1+
ﬂf{”(fn"‘fzz"'fm)z (11+€§2+5§3)]
1-2v)(1+v) 1+v
+1f7 cosi(¢= )+ f; sin(¢— ¢H(m “fﬁ
+[f] sin®(¢p— ¢ )+ f; cos’(p— ¢~ )](622— K;H>-
2)

Applying the stationary conditions implies that the principle
directions of the curvature and surface stress coincide, i.e.,
¢=¢", and that
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Here, £ and v denote the Young’s modulus and Poisson’s
ratio, respectively. It is interesting to note that in the absence
of Poisson coupling, the first two equations reduce to the
Stoney formula in the two principle directions of curvature:
Kk =6f/EH* and k,=6f,/ EH>.

More generally, given surface stresses f* and f~ on the
top and bottom surfaces, respectively, we define the stretch-
ing component of the surface stress f*=f*+f" and the bend-
ing component f*=f"—f". Here, f* is treated as the effective
stress acting on the bottom (z=—H/2) surface. Next, f* and f*
are diagonalized with respect to principle axes (u;,u,) and
(ri,rp): F=flu;@u+u,®u, and f'=fr,@r +f5r, ;.
By decoupling the stretching and bending modes and apply-
ing stationarity principles, we obtain the total strain y=1,
75 Where y,=—(f,—vf3)/ (EH)u, @ u,~ (fi— vf})/ (EH)u,
®u, is the strain due to stretching and 7y,=xzr;®r,
+ K2l ® T, +kyzd, ®d, is the strain caused by effective sur-
face stress on the bottom surface. Here «,=6(f;—vf,)/ EH>,
Ky =6(f>—vf))/ EH?, and k3=—61(f|+f5)/ EH".

The helix angle ®, radius R, and chirality of the helix
(see Fig. 1) are determined from the values of «;, k,, and ¢
obtained from the analysis. More specifically, the helix angle
between the central axis of the bounding cylinder and the
widthwise axis (d,) of the ribbon is

(k| — Ky)sin ¢ cos ¢

& = arctan 5 - (4)
Kj COS™ ¢+ K, sin” ¢

Moreover, the centerline of the ribbon wraps around a
bounding cylinder of radius

K| COS> ¢+ Ky sin’ ¢

- K: cos® ¢+ K3 sin> ¢

(5)

The chirality of the helix is determined by the sign of the
helix angle (or equivalently the torsion of the ribbon center-
line), i.e., sgn(®). Right-handed helices correspond to &
>0, whereas left-handed helices correspond to ®<<0. Ac-
cording to Eq. (4), the chirality is determined by the signs of
both (k;—k,) and sin ¢ cos ¢.

The ribbon forms a ring when either «;=k,, ¢=0, or
¢=1/2. For zero Gaussian curvature, i.e., when either «; or
K, is zero, the ribbon bend into a cylindrical shape. Also,
when x,=—k; and ¢=m/4, the mean curvature (k;+x,)/2
vanishes and the ribbon undergoes a pure twist deformation
(i.e., the centerline remains straight).

To verify these predictions, we performed a series of
simple, table-top experiments. A sheet of latex rubber was
prestretched and bonded to an elastic strip of thick, pressure-
sensitive adhesive.'” Helical ribbons with different helix
angle, helical radius, chirality, and Gaussian curvature were
obtained by altering the magnitudes of the two principle pre-
stretches and their angle with respect to the centerline orien-
tation of the bonded strip (as described in the caption of Fig.
2). As shown in Fig. 2, the theoretical predictions for helix
angle and ribbon shape are in excellent agreement with ex-
perimental observations. Validation of the theory is also
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FIG. 2. (Color online) A square piece of latex rubber (solid lines) is
stretched twice as much in the vertical direction than in the horizontal di-
rection (dashed-dotted edges). An unstrained elastic adhesive sheet is then
bonded to the strained latex sheet and subsequently cut into ribbons with
long axis varying between 0° and 90° (15° intervals). The released samples
are shown at the appropriate angles along with the corresponding theoretical
prediction. The ribbon at the center is composed of prestretched top (pure
horizontal) and bottom (twice the stretch, biaxial) layers with long axis
orientation ¢=30°. As predicted, the stationary configuration is similar to a
ribbon with prestretch only on the bottom surface.

demonstrated for the more general case in which both sides
of the elastic strip are bonded to prestretched layers of latex
rubber. More specifically, a ribbon composed of prestretched
top (pure horizontal) and bottom (twice the stretch, biaxial)
layers was cut along the long axis orientation ¢=30°. Ac-
cording to the theory, the resulting helical shape should be
identical to the one obtained from a single prestretched layer
stretched twice as much in the vertical direction than in the
horizontal direction and subsequently cut along the same
long axis orientation (¢=30°). Indeed, our experiments are
consistent with this prediction, as illustrated in Fig. 2.

The central result of the present work is the development
of a three-dimensional solution (based on continuum elastic-

Appl. Phys. Lett. 98, 011906 (2011)

ity, differential geometry, and stationarity principles) for the
shape of an initially flat, straight ribbon deformed into a
helical form (including curvature parallel and perpendicular
to the major and secondary axes) when subject to arbitrary
surface stress and/or internal residual strain distribution. It
establishes the relationship between surface stress, residual
strain, elasticity, helix angle, helix radius, and chirality. The
present results represent a new formalism for predicting the
shape of helical structures and for tuning the design of rib-
bons with desirable geometric properties for use in a broad
spectrum of biological and engineering applications.
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