

24-673: Soft Matter Engineering for Physical Human-Machine Interaction Prof. Carmel Majidi

Soft Robot Simulation

- **Composition of Robot** Materials & constitutive properties
 - o Elastomers, fluids, gas, rigid elements
 - Hyperelasticity coefficients of elasticity, Poisson's ratio
 - Dielectric, ferroelectric, or piezoelectric properties (e.g. electric permittivity)
 - Ferromagnetic properties
 - Shape memory or thermal properties (e.g. coefficient of thermal expansion)
- State of Robot Material shape and condition
 - Kinematics shape & velocities
 - Reference placement initial shape at time t_0 ; composed of points $\mathbf{X} \in B_0$
 - Current placement current shape at time t; composed of points $\mathbf{x} \in B$
 - Displacement: $\mathbf{u} = \mathbf{x} \mathbf{X}$
 - o Internal voltage field, temperature distribution, magnetic state, ...

- Physical Interactions External loads and environmental conditions
 - Mechanical contact forces (unilateral constraints, friction, collisions), fluid pressure, gravity
 - Electrical applied electrical field or current (e.g. Maxwell stress, magnetic force)
 - Thermal temperature change, supplied heat
- Governing Physics Balance Laws
 - Thermodynamics 1st & 2nd Laws; Principle of Minimum Potential
 - Newton-Euler Equations linear and angular momentum balance for entire robot <u>as well as</u> each volumetric or surface element
 - Maxwell Equations balance of electric displacement and magnetic field

- Position/Orientation of Robot Global Coordinate Systems (COOS)
 - Lagrangian Description coordinates of initial shape (t₀): $\mathbf{X} = X_1 \mathbf{i} + X_2 \mathbf{j} + X_3 \mathbf{k}$ $\nabla_L = (\partial/\partial X_1)\mathbf{i} + (\partial/\partial X_2)\mathbf{j} + (\partial/\partial X_3)\mathbf{k}$
 - Eulerian Description coordinates of current shape (t): $\mathbf{x} = x_1 \mathbf{i} + x_2 \mathbf{j} + x_3 \mathbf{k}$ $\nabla_{\text{E}} = (\partial/\partial x_1)\mathbf{i} + (\partial/\partial x_2)\mathbf{j} + (\partial/\partial x_3)\mathbf{k}$
 - "Deformation gradient": $\mathbf{F} = \nabla_{L} \mathbf{x}$
 - \circ used to calculate the strain energy density: W = W(F)
 - Relates the gradient operators: $\nabla_{L} = \nabla_{E} \mathbf{F}$
 - Relates final and initial volumes: $dV = JdV_0$, where J = det(F)
 - $T^{1PK} = \partial W / \partial F$ is the "1st Piola Kirchoff Stress tensor"
 - By definition, Cauchy stress $\sigma = J^{-1}T^{1PK}F^{T}$

The deformation gradient also relates the deformation of surface elements and divergence of the stress tensors:

Consider a surface element that deforms from $d\mathbf{A}_0 = \mathbf{n}_0 dA_0$ to $d\mathbf{A} = \mathbf{n} dA$. According to Nanson's formula, $d\mathbf{A} = J\mathbf{F}^{-T}d\mathbf{A}_0$. This implies the following identity:

$$\underline{\mathbf{T}}^{^{1\mathrm{PK}}} \cdot \mathbf{d}\underline{\mathbf{A}}_{0} = \underline{\boldsymbol{\sigma}} \cdot \mathbf{d}\underline{\mathbf{A}}$$

Another useful identity is the <u>Piola transformation</u> (related to Piola identity):

$$\left(\nabla_{\mathrm{L}} \cdot \underline{\mathrm{T}}^{\mathrm{1PK}}\right) dV_{0} = \left(\nabla_{\mathrm{E}} \cdot \underline{\mathrm{O}}\right) dV$$

ref. A. Betram, Elasticity & Plasticity of Large Deformations 2nd Ed. (2008)

$$\Pi = \int_{B_0} W dV_0 - \int_{B} \left\{ \frac{1}{2} \underline{D} \cdot \underline{E} \right\} dV + \int_{\partial B} \left\{ \eta \Phi - \underline{t} \cdot \underline{x} \right\} dA$$

$$\begin{split} & \mathsf{W} = \mathsf{strain} \ \mathsf{energy} \ \mathsf{density} \\ & \Phi = \Phi(\mathsf{x}_1, \mathsf{x}_2, \mathsf{x}_3) = \mathsf{voltage} \\ & \underline{\mathsf{E}} = \nabla_{\mathsf{E}} \Phi = \mathsf{electric} \ \mathsf{field} \\ & \underline{\mathsf{\epsilon}} = \mathsf{electric} \ \mathsf{permittivity} \ (2^{\mathsf{nd}} \ \mathsf{order} \ \mathsf{tensor}; \ \mathsf{could} \ \mathsf{be} \ \mathsf{anisotropic}) \\ & \underline{\mathsf{D}} = \underline{\mathsf{\epsilon}} \cdot \underline{\mathsf{E}} = \mathsf{electric} \ \mathsf{displacement} \\ & \eta = \mathsf{surface} \ \mathsf{charge} \ (\mathsf{i.e.} \ \mathsf{charge} \ \mathsf{q} \ \mathsf{per} \ \mathsf{unit} \ \mathsf{area}) \\ & \underline{\mathsf{t}} = \mathsf{surface} \ \mathsf{traction} \ (\mathsf{stress} \ \mathsf{applied} \ \mathsf{to} \ \mathsf{surface}) \end{split}$$

- $\Pi = \Pi(\underline{x}, \Phi)$ find position and voltage field that minimizes potential energy.
- Determine change in Π when $\underline{x} \rightarrow \underline{x} + \delta \underline{x}$ and $\Phi \rightarrow \Phi + \delta \Phi$.
- At equilibrium, corresponding change $\delta \Pi = 0$.

Note that
$$\underline{x} \rightarrow \underline{x} + \delta \underline{x}$$
 and $\Phi \rightarrow \Phi + \delta \Phi$ imply that $\nabla_{L} \underline{x} \rightarrow \nabla_{L} \underline{x} + \nabla_{L} \delta \underline{x}$ and $\nabla_{E} \Phi \rightarrow \nabla_{E} \Phi + \nabla_{E} \delta \Phi$

$$\delta \Pi = \int_{B_0} \left\{ T^{1PK} : \left(\delta \nabla_L \underline{x} \right) \right\} dV_0 - \int_{B} \left\{ \frac{1}{2} \underline{D} \cdot \left(\delta \nabla_E \Phi \right) \right\} dV + \int_{\partial B} \left\{ \eta \delta \Phi - \underline{t} \cdot \delta \underline{x} \right\} dA$$

Product Rule:

$$\int_{B_{0}} \nabla_{L} \left\{ T^{1PK} \delta \underline{x} \right\} dV_{0} = \int_{B_{0}} \left\{ \left(\nabla_{L} \cdot T^{1PK} \right) \delta \underline{x} \right\} dV_{0} + \int_{B_{0}} \left\{ T^{1PK} : \left(\nabla_{L} \delta \underline{x} \right) \right\} dV_{0}$$
$$\int_{B} \nabla_{E} \left\{ \underline{D} \delta \Phi \right\} dV = \int_{B} \left\{ \left(\nabla_{E} \cdot \underline{D} \right) \delta \Phi \right\} dV + \int_{B} \left\{ \underline{D} \cdot \left(\nabla_{E} \delta \Phi \right) \right\} dV$$

Divergence Rule:
$$\int_{B_{0}} \nabla_{L} \left\{ \underline{T}^{1PK} \delta \underline{x} \right\} dV_{0} = \int_{\partial B_{0}} \left\{ \left(\underline{T}^{1PK} \cdot \underline{n}_{0} \right) \delta \underline{x} \right\} dA_{0}$$
$$\int_{B} \nabla_{E} \left\{ \underline{D} \delta \Phi \right\} dV = \int_{\partial B} \left\{ \left(\underline{D} \cdot \underline{n} \right) \delta \Phi \right\} dA$$
$$\Rightarrow \int_{B} \left\{ \underline{D} \cdot \left(\nabla \delta \Phi \right) \right\} dV = \int_{\partial B} \left\{ \left(\underline{D} \cdot \underline{n} \right) \delta \Phi \right\} dA - \int_{B} \left\{ \left(\nabla \cdot \underline{D} \right) \delta \Phi \right\} dV$$
$$\Rightarrow \int_{B_{0}} \left\{ T^{1PK} : \left(\nabla_{L} \delta \underline{x} \right) \right\} dV_{0} = \int_{\partial B_{0}} \left\{ \left(\underline{T}^{1PK} \cdot \underline{n}_{0} \right) \delta \underline{x} \right\} dA_{0} - \int_{B_{0}} \left\{ \left(\nabla_{L} \cdot T^{1PK} \right) \delta \underline{x} \right\} dV_{0} \right\}$$
Nanson & Picla identities identities

Substitute these back into the expression for $\delta \Pi$:

$$\begin{split} \delta \Pi &= - \int_{B} \left\{ \left(\nabla_{E} \cdot \underline{\sigma} \right) \delta \underline{x} + \left(\nabla_{E} \cdot \underline{D} \right) \delta \Phi \right\} dV \\ &+ \int_{\partial B} \left\{ \left(\underline{D} \cdot \underline{n} + \eta \right) \delta \Phi + \left(\underline{\sigma} \cdot \underline{n} - \underline{t} \right) \cdot \delta \underline{x} \right\} dA \end{split}$$

At equilibrium, $\delta\Pi$ must vanish for any arbitrary choice of $\delta\underline{x}$ and $\delta\Phi$. This implies the following Balance Laws:

$\nabla_{E} \cdot \underline{\sigma} = 0$	for $\mathbf{x} \in B$	<u> </u>	for $\mathbf{x} \in \partial B$
$\nabla_{F} \cdot \underline{D} = 0$	for $\mathbf{x} \in B$	<u>D</u> · <u>n</u> = −η	for $\mathbf{x} \in \partial B$

Therefore, finding the displacements and voltages becomes a matter of solving a system of PDEs ("Strong Form").

The PDEs are either satisfied or not – we can't evaluate the accuracy of an approximate solution with a single number.

Approximation

To get an approximate solution, it makes more sense to work with the integral for $\delta\Pi$. This gives us a single number that we can use to evaluate the accuracy of our approximation:

$$\text{Recall:} \quad \delta\Pi = \int_{B_0} \left\{ T^{1PK} : \left(\nabla_L \delta \underline{x} \right) \right\} dV_0 - \int_{B} \left\{ \frac{1}{2} \underline{D} \cdot \left(\nabla_E \delta \Phi \right) \right\} dV + \int_{\partial B} \left\{ \eta \delta \Phi - \underline{t} \cdot \delta \underline{x} \right\} dA$$

The condition $\delta \Pi = 0$ is known as the "Weak Form" of our governing equations:

0.4

З

 $(x, \Phi) \sim$ unknown functions we need to solve for $(\delta x, \delta \Phi) \sim$ "weight functions" that are arbitrary

To get an approximate solution, we divide the domain into a finite # of triangular elements.

Between each node, (x, Φ , δx , $\delta \Phi$) are treated as a linear combination of prescribed basis functions ϕ_i (e.g. lines, polynomials/splines).

$$\underline{\mathbf{x}} = \sum_{i=1}^{N} \underline{\alpha}_{i} \boldsymbol{\varphi}_{i} \left(\underline{\mathbf{X}} \right) \quad \boldsymbol{\Phi} = \sum_{i=1}^{N} \beta_{i} \boldsymbol{\varphi}_{i} \left(\underline{\mathbf{X}} \right) \quad \boldsymbol{\delta} \underline{\mathbf{x}} = \sum_{i=1}^{N} \underline{\gamma}_{i} \boldsymbol{\varphi}_{i} \left(\underline{\mathbf{X}} \right) \quad \boldsymbol{\delta} \boldsymbol{\Phi} = \sum_{i=1}^{N} \chi_{i} \boldsymbol{\varphi}_{i} \left(\underline{\mathbf{X}} \right)$$

- Here, $(\underline{\alpha}_i, \beta_i)$ are unknown and $(\underline{\gamma}_i, \phi_i)$ are arbitrary.
- When we substitute these expressions into $\delta\Pi$, the integral turns into a summation. Therefore it can be computed by performing matrix operations.
- After some matrix manipulation, the arbitrary values (χ_i, φ_i) drop out. We perform a numerical root finding algorithm to solve for (α_i, β_i).
- For nonlinear problems, this is typically done with a gradient descent technique, e.g. Newton-Rapson, Gauss-Newton iteration:
 - Residual is linearized about a certain guess for $(\underline{\alpha}_i, \beta_i)$
 - Solving linearized equation leads to a new guess for $(\underline{\alpha}_i, \beta_i)$
 - Method will only converge to a local solution if (i) the initial guess is sufficiently close and (ii) linearized matrices are well-conditioned (i.e. nonsingular).
- The accuracy of the approximation is evaluated by the convergence of the solution with increasing meshsize (N).

DEA Modeling

H. S. Park, Z. Suo, J. Zhou, P. A. Klein, "A dynamic finite element method for inhomogenous deformationand electromechanical instability of dielectric elastomer transducers," *Int. J. Solids & Struct.* **49** 2187-2194 (2012).

FEA Discretization: $\mathbf{x}(\mathbf{X}, t) - \mathbf{X} = \sum N_a(\mathbf{X})\mathbf{u}_a(t)$ $\Phi(\mathbf{X}, t) = \sum N_a(\mathbf{X})\Phi_a(t)$ Weight (test) functions: $\xi_i(\mathbf{X}) = \sum N_a(\mathbf{X})\xi_{ia}$ $\eta(\mathbf{X}) = \sum N_a(\mathbf{X})\eta_a$

Free Energy

Arruda-Boyce Model:
$$\frac{W_{stretch}}{\mu} = \frac{1}{2}(I-3) + \frac{1}{20N}(I^2-9) + \frac{11}{1050N^2}(I^3-27) + \frac{19}{7000N^3}(I^4-81) + \frac{519}{673750N^4}(I^5-243)$$
Total Free Energy: $\hat{W}(\mathbf{C}, \tilde{\mathbf{E}}) = W_{stretch}(I) + \frac{1}{2}\lambda(\log J)^2 - 2W'_{stretch}(3)\log J - \frac{\varepsilon}{2}JC_{IJ}^{-1}\tilde{E}_{I}\tilde{E}_{J}$
(Gibbs)
$$I^{st} \text{ Piola-Kirchoff Stress:} \quad s_{iJ} = 2F_{iL}\frac{\partial\hat{W}(\mathbf{C}, \tilde{\mathbf{E}})}{\partial C_{JL}}; \quad \mathbf{C} = \mathbf{F}^{\mathsf{T}}\mathbf{F}$$
Electrical Displacement: $\tilde{D}_J = -\frac{\partial\hat{W}(\mathbf{C}, \tilde{\mathbf{E}})}{\partial \tilde{E}_J}$
(Right Cauchy-Green Tensor"

Weak Form of PDEs:

Matrix Form: $g(\mathbf{u}, \Phi, t) = Ma$ $h(\mathbf{u}, \Phi, t) = 0$

Root Finding

Matrix Form: $g(\mathbf{u}, \Phi, t) = \mathbf{M}^{\mathbf{0}}$ (quasistatic) $\mathbf{h}(\mathbf{u}, \Phi, t) = \mathbf{0}$

Linearization:

$$\begin{bmatrix} \mathbf{K}_{mm} & \mathbf{K}_{me} \\ \mathbf{K}_{me}^{T} & \mathbf{K}_{ee} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{u} \\ \Delta \Phi \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{m} \\ \mathbf{f}_{e} \end{bmatrix}$$

$$\begin{split} \mathbf{K}_{mm} &= \int H_{ijkL} \frac{\partial N_a}{\partial X_J} \frac{\partial N_b}{\partial X_L} dV & H_{ijkL} = 2\delta_{ik} \frac{\partial \hat{W}(\mathbf{C}, \tilde{\mathbf{E}})}{\partial C_{JL}} + 4F_{iM}F_{kN} \frac{\partial^2 \hat{W}(\mathbf{C}, \tilde{\mathbf{E}})}{\partial C_{JM} \partial C_{LN}} \\ \mathbf{K}_{me} &= -\int_V e_{kJL} \frac{\partial N_a}{\partial X_J} \frac{\partial N_b}{\partial X_L} dV & e_{ijL} = -2F_{iM} \frac{\partial^2 \hat{W}(\mathbf{C}, \tilde{\mathbf{E}})}{\partial C_{JM} \partial \tilde{E}_L}, \\ \mathbf{K}_{ee} &= -\int_V \varepsilon_{jL} \frac{\partial N_a}{\partial X_J} \frac{\partial N_b}{\partial X_L} dV & \varepsilon_{jL} = -\frac{\partial^2 \hat{W}(\mathbf{C}, \tilde{\mathbf{E}})}{\partial \tilde{E}_J \partial \tilde{E}_L} \\ \mathbf{f}_m &= \int_V B_i N_a dV + \int_A T_i N_a dA - \int_V s_{ij} \frac{\partial N_a}{\partial X_J} dV \\ \mathbf{f}_e &= \int_V q N_a dV + \int_A \omega N_a dA + \int_V \tilde{D}_J \frac{\partial N_a}{\partial X_J} dV \end{split}$$

- Find roots using Newton-Raphson method (i.e. solve linearized equation at each iteration)
- Instability when Hessian becomes singular

CAD MODELING - ISSUES

No algebraic solution

- Scaling laws and design rules?
- How will changing a material property or geometric dimension alter performance?

Takes too long

- Computationally intensive
- Requires hours to run a simulation
- Simulation must be repeated for even minor design changes
- Solution doesn't always converge

Difficult to validate

- No method to independenty validate solution
- Dependent on accuracy of assumptions/input
- "Garbage in, garbage out"

PROPOSED ALTERNATIVE

Discretize!

• Treat each limb as an individual element

Use "Reduce Dimensional" Models

- Euler-Bernoulli Beam Theory
- Kirchoff Plate Theory
- Coulomb's Friction Law
- Hertzian Contact Theory

Ensure Compatibility

- Attached elements must be kinematically compatible
- Transfer of equal-and-opposite loads

Use ODE solvers in MATLAB

- Runga-Kutta (ode45)
- Finite difference (bvp4c)
- Avoid PDEs whenever possible!

EULER-BERNOULLI BEAM THEORY

 $\theta + \kappa dx$

ρ

θ

v = deflection

$$\theta = \frac{dv}{dx} = slope$$

 $\kappa = \frac{d\theta}{dx} = \frac{1}{\rho} = curvature$

 ρ = radius of curvature

$$\kappa = \frac{d\theta}{dx^2} = \frac{d^2v}{dx^2} \equiv \frac{M}{EI}$$

Deflection are determined by calculating the internal bending moment M = M(x).

Examples

M = V(L - x)

 $M = M_0$

d^2v	$-M_0$	_
dx^2	EI	_
v(0) = -	$\left. \frac{\mathrm{d} v}{\mathrm{d} x} \right _{x=0}$	= 0

$\frac{d^2v}{dx^2} =$	$\frac{V}{EI}$	(L-x)
v(0) =	$\frac{\mathrm{d} \mathrm{v}}{\mathrm{d} \mathrm{x}}$	= 0

 $M = -w(L-x)^2/2$

W

 $\frac{d^2 v}{dx^2} = -\frac{w}{2EI} (L - x)^2$ $v(0) = \frac{dv}{dx} \Big|_{x=0} = 0$

ELASTICA

For large deflections, use Elastica theory

In both Elastica and Linear Beam Theory, $M = D\kappa$, where

 $M = M(\xi)$ and $\kappa = d\theta/ds$

The difference between the two theories is how we calculate M and θ .

<u>Linear Beam Theory</u> $dv/ds = \theta$ M calculated in Lagrangian Description (Ref. Placement) Elastica $dv/ds = sin(\theta)$ M calculated in EulerianDescription (Current)

dv

Converge for small deflection: $\cos(\theta) \approx 1$ $dM/ds \approx -V \Rightarrow M = C_1 - Vs$ $M(L) = 0 \Rightarrow C_1 = Ls$ $\Rightarrow d\theta/ds = -(V/D)(L - s)$

In general,
$$\frac{d^2\theta}{ds^2} = k_1 \sin(\theta) + k_2 \cos(\theta)$$

(non-linear 2nd-order ODE)

Must solve for $\theta(0) = 0$ and $\theta'(L) = M_L$

For pure shear, is determined by solving the following boundary-value problem (BVP):

$$\frac{d^2\theta}{ds^2} = -\frac{V}{D}\cos(\theta) \quad \theta(0) = 0 \quad \theta'(L) = 0$$

 \mathbf{V}

solid = Elastica dashed = Linear Beam Theory \rightarrow $y = \frac{V}{C}$

$$x = s$$
$$y = \frac{Vs^2}{6D} (3L - s)$$

We typically solve nonlinear BVPs in Matlab using bvp4c:

function elastica

global D V R0

n = 100;

- L = 1;
- D = 1;

```
V = 2;
```

```
s = linspace(0,L,n);
ds = L/(n-1);
```

solinit = bvpinit(s,@axial_init); sol = bvp4c(@axial ode,@axial bc,solinit);

```
S = deval(sol,s);
theta = S(1,:);
kappa = S(2,:);
```

$$\frac{d^2\theta}{ds^2} = -\frac{V}{D}\cos(\theta) \quad \theta(0) = 0 \quad \theta'(L) = 0$$

Matlab solves 1st order ODEs (scalars or vectors). Convert:

$$z = \begin{pmatrix} \theta \\ \theta' \end{pmatrix} \Longrightarrow z' = \begin{pmatrix} z_2 \\ -\frac{V}{D}\cos(z_1) \end{pmatrix}$$

$$z_1(0) = 0 \quad z_2(L) = 0$$

PLATE THEORY

Deflection:
$$v = v(x, y)$$

Estimate deflection using Rayleigh-Ritz method. For a rectangular plate with weight per unit area p:

$$\Pi = \iint \left\{ \frac{D}{2} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)^2 - v p \right\} dx dy$$

Suppose that a rectangular plate with simple supports and edges of length a and b is uniformly loaded. To obtain an estimate for v = v(x,y), we will assume that it has the form

$$v = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn} \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)$$

This implies

$$\Pi = \int_{0}^{a} \int_{0}^{b} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left\{ \frac{D}{2} \left[a_{mn} \left(\frac{m^2 \pi^2}{a^2} + \frac{n^2 \pi^2}{b^2} \right) \sin\left(\frac{m \pi x}{a} \right) \sin\left(\frac{n \pi y}{b} \right) \right]^2 - p_0 a_{mn} \sin\left(\frac{m \pi x}{a} \right) \sin\left(\frac{n \pi y}{b} \right) dx dy$$

Integrating, it follows that

$$\Pi = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left\{ \frac{\pi^4 a b D}{8} a_{mn}^2 \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)^2 - \frac{4 p_0 a b}{\pi^2 m n} a_{mn} \right\}$$

for m, n = 1, 3, ...

At equilibrium,
$$\frac{d\Pi}{da_{mn}} = 0$$

Solving for a_{mn} yields

$$a_{mn} = \frac{16p_0}{\pi^6 mn D \left[(m/a)^2 + (n/b)^2 \right]^2}$$

Review of actuator technologies Pneumatic • DEA • SMA • IPMC • Bio-hybrid

Representations of Soft Robot Limbs Euler-Bernouli Beam • Elastica • Plate/Shell

Simulation of Soft Robot Limbs Kinematics • Tribology • Analysis (ODE/PDE)

SOFT ROBOT GRIPPER

open: $(\kappa_0)_{open} = 0$

closed:
$$(\kappa_0)_{\text{closed}} = \kappa_0 > 0$$

Deflection: v = v(x)

- What is v(x)?
- What is the contact force F?
- What is the gripping strength?

SOFT ROBOT GRIPPER

BCs
$$| v(0) = v(L) = v'(0) = 0$$

 $m(L) = 0 \Rightarrow v''(L) = \kappa_0$

LINEAR BEAM THEORY

$$v''' = \frac{F}{D} \Rightarrow v = c_0 + c_1 x + c_2 x^2 + \frac{F}{6D} x^3$$
$$v(0) = v'(0) = 0 \Rightarrow v = c_2 x^2 + \frac{F}{6D} x^3$$

$$v(L) = 0 \Longrightarrow c_2 = -\frac{FL}{6D}$$

$$v = \frac{F}{6D} \left(x^3 - x^2 L \right)$$

$$v''(L) = \kappa_0 \Longrightarrow F = \frac{3D\kappa_0}{2L}$$

$$\therefore \mathbf{V} = \frac{\kappa_0 \mathbf{x}^2}{4} \left(\frac{\mathbf{x}}{\mathbf{L}} - 1\right)$$

COULOMB'S LAW

 $\tau A_t \sim$ interfacial shear strength

According to Contact Mechanics $A_t \approx A_0 + \alpha F$ e.g. Greenwood-Williamson & Johnson-Kendall-Roberts Theories

GRIPPING STRENGTH

$$V = \mu_0 F + \tau (\alpha F + A_0)$$
$$= \mu F + V_0$$
where $\mu = \mu_0 + \tau \alpha$ and $V_0 = \tau A_0$

Ignoring the initial adhesion
(i.e.
$$V_0 \approx 0$$
) slip occurs when $V > \mu F = \frac{3\mu D\kappa_0}{2L}$

Limitations of Linearized theory:

- Kinematics not accurate for large deflection
- Does not account for influence of axial load during pick & place operations

Two Finger Gripper

Finger ~ Naturally Curved Elastic rod

- Length L, curvature κ_0
- Natural curvature controlled by actuator
 - open: $(\kappa_0)_{open}$
 - closed: $(\kappa_0)_{closed}$
 - Flexural rigidity D = EI
 - E = Young's Modulus
 - I = wh³/12 = Area Moment of Inertia
- Fixed slope at base

•

- Contact loads F and V at the tip
 - F = normal reaction force to prevent interpenetration
 - V = tangential frictional resistance to sliding
- Large deflection bending
 - Small angle approximation and Euler-Bernoulli beam theory are *not valid*
 - Use Elastica theory planar bending; large angle deflection; small bending strains

HW 5

1 Flexible Bending Actuator. A flexible bending actuator can be treated as an inextensible rod with a natural bending curvature κ_0 and flexural rigidity D. Let L = 5 cm, D = 4×10⁻⁶ Nm², $\kappa_0 = 60$ m⁻¹.

Suppose that point loads F and V are applied to the free end, as shown. The slope $\theta = \theta(s)$ is determined by minimizing the functional

 $\Pi = \Pi(\kappa) = \int_{0}^{L} \frac{1}{2} D_{eq} (\kappa - \kappa_{0})^{2} ds - Fx_{L} - Vy_{L},$ $\kappa = d\theta/ds = \theta'$

 (x_L, y_L) are the coordinates of the end of the actuator

- **Step 1**: Find $\theta = \theta(s; F, V)$
- **Step 2**: Find x = x(s) and y = y(s)
- **Step 3**: Find F such that $x_L := x(L)$ is equal to x_0
- **Step 4**: Calculate maximum frictional resistance μF . If $\mu F > V$ then contact will slip

Step 1: Find $\theta = \theta(s; F, V)$

$$\Pi = \Pi(\kappa) = \int_{0}^{L} \frac{1}{2} D_{eq} (\kappa - \kappa_{0})^{2} ds - Fx_{L} - Vy_{L}$$
$$x_{L} = \int_{0}^{L} \cos\theta ds \quad \text{and} \quad y_{L} = \int_{0}^{L} \sin\theta ds$$

Determine θ that minimizes Π .

$$\Pi = \int_{0}^{L} \left\{ \frac{1}{2} D(\theta' - \kappa_0)^2 - F \cos \theta - V \sin \theta \right\} ds = \int_{0}^{L} \Gamma(\theta, \theta') ds$$

Calculus of Variations:

$$\begin{split} \delta \Pi &= \int_{0}^{L} \left\{ \frac{\partial \Gamma}{\partial \theta} \delta \theta + \frac{\partial \Gamma}{\partial \theta'} \delta \theta' \right\} ds \equiv 0 \\ &= \int_{0}^{L} \left\{ \frac{\partial \Gamma}{\partial \theta} \delta \theta + \frac{d}{ds} \left(\frac{\partial \Gamma}{\partial \theta'} \delta \theta \right) - \left[\frac{d}{ds} \left(\frac{\partial \Gamma}{\partial \theta'} \right) \right] \delta \theta \right\} ds \equiv 0 \\ &= \left(\frac{\partial \Gamma}{\partial \theta'} \right)_{s=L} \delta \theta (L) - \left(\frac{\partial \Gamma}{\partial \theta'} \right)_{s=0} \delta \theta (0) + \int_{0}^{L} \left\{ \frac{\partial \Gamma}{\partial \theta} - \frac{d}{ds} \left(\frac{\partial \Gamma}{\partial \theta'} \right) \right\} \delta \theta ds \equiv 0 \end{split}$$

Step 1: Find $\theta = \theta(s; F, V)$

$$\begin{aligned} \underline{\theta}(0) &= 0 \\ \Rightarrow \delta \overline{\theta}(0) &= 0 \\ \Rightarrow \delta \overline{\theta}(0) &= 0 \\ \Rightarrow \delta \overline{\Pi} &= \left(\frac{\partial \Gamma}{\partial \theta'}\right)_{s=L} \delta \overline{\theta}(L) + \int_{0}^{L} \left\{\frac{\partial \Gamma}{\partial \theta} - \frac{d}{ds}\left(\frac{\partial \Gamma}{\partial \theta'}\right)\right\} \delta \overline{\theta} \, ds \\ \delta \overline{\Pi} &= 0 \forall \delta \overline{\theta} \Rightarrow \begin{cases} \left(\frac{\partial \Gamma}{\partial \theta'}\right)_{s=L} = 0 \\ \frac{\partial \Gamma}{\partial \theta} - \frac{d}{ds}\left(\frac{\partial \Gamma}{\partial \theta'}\right) = 0 \end{cases} \end{aligned}$$

 $\frac{\partial \Gamma}{\partial \theta} = F \sin \theta - V \cos \theta$

$$\left(\frac{\partial \Gamma}{\partial \theta'}\right)_{s=L} = 0 \Longrightarrow D\left\{\theta'(L) - \kappa_0\right\} = 0 \qquad \therefore \theta'(L) = \kappa_0$$

$$\frac{\partial \Gamma}{\partial \theta'} = \mathbf{D} \big(\theta' - \kappa_0 \big)$$

$$\frac{\partial \Gamma}{\partial \theta} - \frac{\mathrm{d}}{\mathrm{ds}} \left(\frac{\partial \Gamma}{\partial \theta'} \right) = 0 \Longrightarrow F \sin \theta - V \cos \theta - D \theta'' = 0$$

$$\therefore \theta'' - \frac{F}{D}\sin\theta + \frac{V}{D}\cos\theta = 0$$

$$\theta'' - \frac{F}{D}\sin\theta + \frac{V}{D}\cos\theta = 0$$
 $\theta(0) = 0$ $\theta'(L) = \kappa_0$

In MATLAB, use bvp4c to solve θ for $0 \le s \le L$:

- **Step 1a**: Define system parameters & variables F, V, D, κ_0 , L, s
- Step 1b: Guess Solution

```
solinit = bvpinit(s,@mat4init);
%------
function yinit = mat4init(s)
yinit = [ kappa0*s; kappa0];
```

Boundary Value Problem

Step 2: Find x = x(s) and y = y(s)

Given $\theta = \theta$ (s), we can find x and y by integration:

$$x(s) = \int_{0}^{s} \cos\theta(\hat{s}) d\hat{s}$$
 and $y(s) = \int_{0}^{s} \sin\theta(\hat{s}) d\hat{s}$

Shortcut: Let s = linspace(0,L,n) and ds = L/(n - 1)

$$\begin{cases} s_1 \\ s_2 \\ s_3 \\ \vdots \\ s_n \end{cases} = \begin{cases} 0 \\ ds \\ 2ds \\ \vdots \\ (n-1)ds = L \end{cases}$$

$$x(s_1) = 0$$

$$x(s_2) \\ x(s_2) \\ \vdots \\ x(s_n) \end{cases} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 1 & 1 & \cdots & 1 \end{bmatrix} \begin{cases} \cos\theta(s_1) \\ \cos\theta(s_2) \\ \vdots \\ \cos\theta(s_{n-1}) \end{cases} ds$$

Step 2: Find x = x(s) and y = y(s)

Step 3: Find F such that $x_L := x(L)$ is equal to x_0

$$\mathbf{x}_{\mathrm{L}} = \int_{0}^{\mathrm{L}} \cos\theta \, \mathrm{ds} = \mathbf{x}_{0}$$

In MATLAB, use fzero:

Step 4: Calculate maximum frictional resistance μF . If $\mu F > V$ then contact will slip

3-SEGMENT UNDULATING ROBOT

Felt

Polyethylene

Gelatin

3-Segment Undulating Robot (2D Model)

2 Limb Pairs & 1 Torso → 3 Segments

Segments: S_1 , S_2 , S_3

- Lengths L_i
- s = arclength (left to right)
- $L = L_1 + L_2 + L_3$
- $S_1 = [0, L_1)$
- $S_2 = [L_1, L_1 + L_2)$
- $S_3 = [L_1 + L_2, L]$

3-Segment Undulating Robot (2D Model)

- Elastic with tunable flexural rigidity $D_i = D(p_i)$ and natural curvature $\kappa_i = \kappa(p_i)$
 - \circ p_i = signal input (i.e. pressure, voltage, current, ...)
 - \circ y_i = y_i(s) vertical deflection
 - \circ m_i = D(y''_i \kappa_i) = internal bending moment of ith segment
- Gravitational loading per unit length: $w = (\rho wt)g$
 - $\circ \rho = mass density$
 - \circ w = limb width

 - \circ g = gravity

Step 1: At the start of each time step, assume point contact at the ends and calculate the solution $\{a_i, b_i, c_i, d_i\}$ for the following BCs

Kinematic

$$y_{1}(0) = y_{3}(L) = 0$$

$$y_{1}(L_{1}) = y_{2}(L_{1})$$

$$y_{2}(L_{1} + L_{2}) = y_{3}(L_{1} + L_{2})$$

$$y'_{1}(L_{1}) = y'_{2}(L_{1})$$

$$y'_{2}(L_{1} + L_{2}) = y'_{3}(L_{1} + L_{2})$$

Static/Natural $y_1''(0) = \kappa_1$ $y_3''(L) = \kappa_3$ $D_1 \{y_1''(L_1) - \kappa_1\} = D_2 \{y_2''(L_1) - \kappa_2\}$ $D_2 \{y_2''(L_1 + L_2) - \kappa_2\} = D_3 \{y_3''(L_1 + L_2) - \kappa_3\}$ $D_1 y_1'''(L_1) = D_2 y_2'''(L_2)$ $D_2 y_2'''(L_1 + L_2) = D_3 y_3'''(L_1 + L_2)$ Step 2: Determine Contact Mode

Mode 0: If $y_1'(0) > 0$ and $y_3'(L) < 0$, then robot makes tip contact at its ends (mode 0)

Otherwise, the robot is expected to be engaged in one of the following modes of contact:

Although other contact modes are possible, it is assumed that the limbs are actuated such that only configurations 0-vi will be observed.

Mode i-iii: If $y_1'(0) < 0$ and $-y_1'(0) > y_3'(L)$, then left end of robot is expected to engage in "side contact." Additional unknown: length of side contact ξ .

 ξ may span 1-3 segments. Since this is not known apriori, we must determine $\{a_i, b_i, c_i, d_i\}$ ξ for each mode:

(i) Replace
$$y_1(0) = 0$$
 $y_1''(0) = \kappa_1$
with $y_1(\xi) = 0$ $y_1'(\xi) = 0$ $y_1''(\xi) = 0$

$$0 < \xi < L_1 \Rightarrow \text{mode i}$$

$$L_1 < \xi < L_1 + L_2 \Rightarrow \text{mode ii}$$

$$L_1 + L_2 < \xi < L \Rightarrow \text{mode iii}$$

(ii)
$$y_{2}(\xi) = y_{3}(L) = y'_{2}(\xi) = y''_{2}(\xi) = 0$$
 $y''_{3}(L) = \kappa_{3}$
 $y_{2}(L_{1} + L_{2}) = y_{3}(L_{1} + L_{2})$ $D_{2}\{y''_{2}(L_{1} + L_{2}) - \kappa_{2}\} = D_{3}\{y''_{3}(L_{1} + L_{2}) - \kappa_{3}\}$
 $y'_{2}(L_{1} + L_{2}) = y'_{3}(L_{1} + L_{2})$ $D_{2}y'''_{2}(L_{1} + L_{2}) = D_{3}y'''_{3}(L_{1} + L_{2})$

(iii) $y_3(\xi) = y_3(L) = y'_3(\xi) = y''_3(\xi) = 0$ $y''_3(L) = \kappa_3$ Mode iv-vi: If $y_3'(L) > 0$ and $-y_1'(0) < y_3'(L)$, then right end of robot is expected to bein "side contact."

(iv)
$$y_1(0) = y_1(\xi) = y'_1(\xi) = y''_1(\xi) = 0$$

 $y''_1(0) = \kappa_1$

(v)
$$y_1(0) = y_2(\xi) = y'_2(\xi) = y''_2(\xi) = 0$$

 $y_1(L_1) = y_2(L_2)$
 $y''_1(\xi) = \kappa_1$
 $D_1 \{y''_1(L_1) - \kappa_1\} = D_2 \{y''_2(L_1) - \kappa_2\}$
 $D_1y'''_1(L_1) = D_2y'''_2(L_1)$

(vi) Replace $y_3(L) = 0$ $y''_3(L) = \kappa_1$

with
$$y_3(\xi) = 0$$
 $y'_3(\xi) = 0$ $y''_1(\xi) = 0$

Step 3: Determine step length. Vertical deflection y(s) of inextensible rods results in a change in horizontal separation Λ :

$$\begin{split} \Lambda &= \int_{0}^{L_{1}} \left\{ 1 - \frac{1}{2} (y_{1}')^{2} \right\} ds + \int_{L_{1}}^{L_{1} + L_{2}} \left\{ 1 - \frac{1}{2} (y_{2}')^{2} \right\} ds \\ &+ \int_{L_{1} + L_{2}}^{L} \left\{ 1 - \frac{1}{2} (y_{3}')^{2} \right\} ds. \end{split}$$

Step 4: Determine direction of motion. Assume Coulombic friction:

 V_t = sliding resistance of tip contact τa = resistance of side contact

- $\tau = interfacial shear strength$
- a = length of side contact

End with larger sliding resistance remains fixed and the opposite slides to accommodate change in Λ .

Examples

Felt	non-slippery sliding resistance scales with contact Normalized resistance: $V_t = 0, \tau = 1$
Gelatin	slippery deformable sharp tip from point contact digs into substrate flat (side) contact slides Normalized resistance: $V_t = 1, \tau = 0$
Polyethylene	mixed frictional resistance

Normalized resistance: $V_t = 0.75, \tau = 0.25$

Input

$$\kappa_i = \alpha p_i$$

$$\mathbf{D}_{i} = \mathbf{D}_{0} + \beta \mathbf{p}_{i}$$

Unitless analysis p_i , α , D_0 , β are "normalized"

Polyethylene $V_t = 0.75, \tau = 0.25$

