

24-673: Soft Matter Engineering
for Physical Human-Machine Interaction
Prof. Carmel Majidi

Soft Robot Simulation

- Composition of Robot - Materials \& constitutive properties
- Elastomers, fluids, gas, rigid elements
- Hyperelasticity - coefficients of elasticity, Poisson's ratio
- Dielectric, ferroelectric, or piezoelectric properties (e.g. electric permittivity)
- Ferromagnetic properties
- Shape memory or thermal properties (e.g. coefficient of thermal expansion)
- State of Robot - Material shape and condition
- Kinematics - shape \& velocities
- Reference placement - initial shape at time t_{0}; composed of points $\mathbf{X} \in \mathrm{B}_{0}$
- Current placement - current shape at time t; composed of points $x \in B$
- Displacement: $\mathbf{u}=\mathbf{x}-\mathbf{X}$
- Internal voltage field, temperature distribution, magnetic state, ...
- Physical Interactions - External loads and environmental conditions
- Mechanical - contact forces (unilateral constraints, friction, collisions), fluid pressure, gravity
- Electrical - applied electrical field or current (e.g. Maxwell stress, magnetic force)
- Thermal - temperature change, supplied heat
- Governing Physics - Balance Laws
- Thermodynamics - $1^{\text {st }} \& 2^{\text {nd }}$ Laws; Principle of Minimum Potential
- Newton-Euler Equations - linear and angular momentum balance for entire robot as well as each volumetric or surface element
- Maxwell Equations - balance of electric displacement and magnetic field
- Position/Orientation of Robot - Global Coordinate Systems (COOS)
- Lagrangian Description - coordinates of initial shape $\left(\mathrm{t}_{0}\right): \mathbf{X}=\mathrm{X}_{\mathbf{1}} \mathbf{i}+\mathrm{X}_{\mathbf{2}} \mathbf{j}+\mathrm{X}_{3} \mathbf{k}$ $\nabla_{\mathrm{L}}=\left(\partial / \partial \mathrm{X}_{1}\right) \mathbf{i}+\left(\partial / \partial \mathrm{X}_{2}\right) \mathbf{j}+\left(\partial / \partial \mathrm{X}_{3}\right) \mathbf{k}$
- Eulerian Description - coordinates of current shape (t): $\mathbf{x}=\mathrm{x}_{1} \mathbf{i}+\mathrm{x}_{2} \mathbf{j}+\mathrm{x}_{3} \mathbf{k}$ $\nabla_{\mathrm{E}}=\left(\partial / \partial \mathrm{x}_{1}\right) \mathbf{i}+\left(\partial / \partial \mathrm{x}_{2}\right) \mathbf{j}+\left(\partial / \partial \mathrm{x}_{3}\right) \mathbf{k}$
"Deformation gradient": $\mathbf{F}=\nabla_{\mathrm{L}} \mathbf{x}$

- used to calculate the strain energy density: $\mathrm{W}=\mathrm{W}(\mathbf{F})$
- Relates the gradient operators: $\nabla_{\mathrm{L}}=\nabla_{\mathrm{E}} \mathrm{F}$
- Relates final and initial volumes: $\mathrm{dV}=\mathrm{JdV} \mathrm{V}_{0}$, where $\mathrm{J}=\operatorname{det}(\mathbf{F})$
- $\mathrm{T}^{\mathrm{PPK}}=\partial \mathrm{W} / \partial \mathbf{F}$ is the " $1^{\text {st }}$ Piola Kirchoff Stress tensor"
- By definition, Cauchy stress $\sigma=J^{-1} \mathbf{T}^{1 \mathrm{P}^{2}} \mathbf{F}^{\top}$

The deformation gradient also relates the deformation of surface elements and divergence of the stress tensors:

Consider a surface element that deforms from $\mathrm{d} \mathbf{A}_{0}=\mathbf{n}_{0} \mathrm{dA} \mathrm{A}_{0}$ to $\mathrm{d} \mathbf{A}=\mathbf{n d A}$. According to Nanson's formula, $\mathrm{d} \mathbf{A}=\mathrm{JF}^{-\mathrm{T}} \mathrm{d} \mathbf{A}_{0}$. This implies the following identity:

$$
\underline{\mathrm{T}}^{\mathrm{PK}} \cdot \mathrm{~d} \underline{\mathrm{~A}}_{0}=\underline{\sigma} \cdot \mathrm{d} \underline{\mathrm{~A}}
$$

Another useful identity is the Piola transformation (related to Piola identity):

$$
\left(\nabla_{\mathrm{L}} \cdot \underline{\mathrm{~T}}^{\mathrm{PK}}\right) \mathrm{dV} V_{0}=\left(\nabla_{\mathrm{E}} \cdot \underline{\sigma}\right) \mathrm{dV}
$$

ref. A. Betram, Elasticity \& Plasticity of Large Deformations $2^{\text {nd }}$ Ed. (2008)

Example: DEA System

$$
\Pi=\int_{B_{0}} W^{2} V_{0}-\int_{B}\left\{\frac{1}{2} \underline{D} \cdot \underline{E}\right\} d V+\int_{\partial B}\{\eta \Phi-\underline{t} \cdot \underline{x}\} d A
$$

$\mathrm{W}=$ strain energy density
$\Phi=\Phi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=$ voltage
$\underline{E}=\nabla_{E} \Phi=$ electric field
$\underline{\varepsilon}=$ electric permittivity (2 ${ }^{\text {nd }}$ order tensor; could be anisotropic)
$\underline{D}=\underline{\varepsilon} \cdot \underline{E}=$ electric displacement
$\eta=$ surface charge (i.e. charge q per unit area)
$\underline{t}=$ surface traction (stress applied to surface)

- $\Pi=\Pi(\underline{x}, \Phi)$ - find position and voltage field that minimizes potential energy.
- Determine change in Π when $\underline{x} \rightarrow \underline{x}+\delta \underline{x}$ and $\Phi \rightarrow \Phi+\delta \Phi$.
- At equilibrium, corresponding change $\delta \Pi=0$.

Note that $\underline{x} \rightarrow \underline{x}+\delta \underline{x}$ and $\Phi \rightarrow \Phi+\delta \Phi$ imply that $\nabla_{\mathrm{L}} \underline{\mathrm{x}} \rightarrow \nabla_{\mathrm{L}} \underline{\mathrm{x}}+\nabla_{\mathrm{L}} \delta \underline{\mathrm{x}}$ and $\nabla_{\mathrm{E}} \Phi \rightarrow \nabla_{\mathrm{E}} \Phi+\nabla_{\mathrm{E}} \delta \Phi$

$$
\delta \Pi=\int_{B_{0}}\left\{\mathrm{~T}^{1 P K}:\left(\delta \nabla_{\mathrm{L}} \underline{\mathrm{x}}\right)\right\} \mathrm{dV} V_{0}-\int_{\mathrm{B}}\left\{\frac{1}{2} \underline{\mathrm{D}} \cdot\left(\delta \nabla_{\mathrm{E}} \Phi\right)\right\} \mathrm{dV}+\int_{\partial \mathrm{B}}\{\eta \delta \Phi-\underline{\mathrm{t}} \cdot \delta \underline{\mathrm{x}}\} \mathrm{dA}
$$

Product Rule:

$$
\begin{aligned}
& \int_{B} \nabla_{\mathrm{E}}\{\underline{\mathrm{D}} \delta \Phi\} \mathrm{dV}=\int_{B}\left\{\left(\nabla_{\mathrm{F}} \cdot \underline{\mathrm{D}}\right) \delta \Phi\right\} \mathrm{dV}+\int_{B}\left\{\underline{\mathrm{D}} \cdot\left(\nabla_{\varepsilon} \delta \Phi\right)\right\} \mathrm{dV}
\end{aligned}
$$

Divergence Rule: $\int_{\mathrm{B}_{0}} \nabla_{\mathrm{L}}\left\{\underline{\mathrm{T}}^{1 \mathrm{PK}} \delta \underline{\mathrm{x}}\right\} d \mathrm{~V}_{0}=\int_{\partial \mathrm{B}_{0}}\left\{\left(\underline{\mathrm{~T}}^{1 \mathrm{PK}} \cdot \underline{\underline{n}}_{0}\right) \delta \underline{\mathrm{x}}\right\} \mathrm{dA}_{0}$

$$
\begin{aligned}
& \int_{\mathrm{B}} \nabla_{\mathrm{E}}\{\underline{\mathrm{D}} \delta \Phi\} \mathrm{dV}=\int_{\partial \mathrm{B}}\{(\underline{\mathrm{D}} \cdot \underline{\mathrm{n}}) \delta \Phi\} \mathrm{dA} \\
& \Rightarrow \int_{B}\{\underline{\mathrm{D}} \cdot(\nabla \delta \Phi)\} \mathrm{dV}=\int_{\partial \mathrm{B}}\{(\underline{\mathrm{D}} \cdot \underline{\mathrm{n}}) \delta \Phi\} \mathrm{dA}-\int_{\mathrm{B}}\{(\nabla \cdot \underline{\mathrm{D}}) \delta \Phi\} \mathrm{dV} \\
& \Rightarrow \int_{\mathrm{B}_{0}}\left\{\mathrm{~T}^{1 \mathrm{PK}}:\left(\nabla_{\mathrm{L}} \delta \underline{\mathrm{x}}\right)\right\} \mathrm{dV} V_{0}=\int_{\partial \mathrm{B}_{0}}\left\{\left(\underline{\mathrm{~T}}^{\mathrm{PK}} \cdot \underline{\mathrm{n}}_{0}\right) \delta \underline{\mathrm{x}}\right\} \mathrm{dA}_{0}-\int_{\mathrm{B}_{0}}\left\{\left(\nabla_{\mathrm{L}} \cdot \mathrm{~T}^{\mathrm{PK}}\right) \delta \underline{\mathrm{x}}\right\} \mathrm{d} V_{0} \\
& =\int_{\partial B}\{(\underline{\sigma} \cdot \underline{n}) \delta \underline{x}\} d \mathrm{~A}-\int_{B}\left\{\left(\nabla_{E} \cdot \underline{\sigma}\right) \delta \underline{x}\right\} \mathrm{dV}
\end{aligned}
$$

Substitute these back into the expression for $\delta \Pi$:

$$
\begin{aligned}
\delta \Pi= & -\int_{B}\left\{\left(\nabla_{E} \cdot \underline{\sigma}\right) \delta \underline{x}+\left(\nabla_{E} \cdot \underline{\mathrm{D}}\right) \delta \Phi\right\} \mathrm{dV} \\
& +\int_{\partial B}\{(\underline{\mathrm{D}} \cdot \underline{\mathrm{n}}+\eta) \delta \Phi+(\underline{\sigma} \cdot \underline{\mathrm{n}}-\underline{\mathrm{t}}) \cdot \delta \underline{\mathrm{x}}\} \mathrm{dA}
\end{aligned}
$$

At equilibrium, $\delta \Pi$ must vanish for any arbitrary choice of $\delta \underline{x}$ and $\delta \Phi$. This implies the following Balance Laws:

$$
\begin{array}{lll}
\nabla_{E} \cdot \underline{\sigma}=0 & \text { for } \mathbf{x} \in B & \underline{\sigma} \cdot \underline{n}=\underline{t} \\
\nabla_{E} \cdot \underline{D}=0 & \text { for } \mathbf{x} x \in \partial B \\
\underline{D} \cdot \underline{n}=-\eta & \text { for } \mathbf{x} \in \partial B
\end{array}
$$

Therefore, finding the displacements and voltages becomes a matter of solving a system of PDEs ("Strong Form").

The PDEs are either satisfied or not - we can't evaluate the accuracy of an approximate solution with a single number.

Approximation

To get an approximate solution, it makes more sense to work with the integral for $\delta \Pi$. This gives us a single number that we can use to evaluate the accuracy of our approximation:
Recall: $\delta \Pi=\int_{B_{0}}\left\{\mathrm{~T}^{1 \mathrm{PK}}:\left(\nabla_{\mathrm{L}} \delta \underline{\mathrm{x}}\right)\right\} \mathrm{dV}_{0}-\int_{\mathrm{B}}\left\{\frac{1}{2} \underline{\mathrm{D}} \cdot\left(\nabla_{\mathrm{E}} \delta \Phi\right)\right\} \mathrm{dV}+\int_{\partial B}\{\eta \delta \Phi-\underline{\mathrm{t}} \cdot \delta \underline{\mathrm{x}}\} \mathrm{dA}$
The condition $\delta \Pi=0$ is known as the "Weak Form" of our governing equations:
(x, Φ) ~ unknown functions we need to solve for ($\delta x, \delta \Phi$) ~"weight functions" that are arbitrary

To get an approximate solution, we divide the domain into a finite \# of triangular elements.

Between each node, (x, $\Phi, \delta x, \delta \Phi)$ are treated as a linear combination of prescribed basis functions ϕ_{i} (e.g. lines, polynomials/splines).

$$
\underline{\mathrm{x}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \underline{\alpha}_{i} \phi_{\mathrm{i}}(\underline{\mathrm{x}}) \quad \Phi=\sum_{\mathrm{i}=1}^{\mathrm{N}} \beta_{\mathrm{i}} \phi_{\mathrm{i}}(\underline{\mathrm{x}}) \quad \delta \underline{\mathrm{x}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \underline{\gamma}_{\mathrm{i}} \phi_{\mathrm{i}}(\underline{\mathrm{x}}) \quad \delta \Phi=\sum_{\mathrm{i}=1}^{\mathrm{N}} \chi_{\mathrm{i}} \phi_{\mathrm{i}}(\underline{\mathrm{x}})
$$

- Here, $\left(\alpha_{i}, \beta_{i}\right)$ are unknown and $\left(y_{i}, \phi_{i}\right)$ are arbitrary.
- When we substitute these expressions into $\delta \Pi$, the integral turns into a summation. Therefore it can be computed by performing matrix operations.
- After some matrix manipulation, the arbitrary values $\left(\chi_{i}, \phi_{i}\right)$ drop out. We perform a numerical root finding algorithm to solve for ($\underline{\alpha}_{i}, \beta_{i}$).
- For nonlinear problems, this is typically done with a gradient descent technique, e.g. Newton-Rapson, Gauss-Newton iteration:
- Residual is linearized about a certain guess for (α_{i}, β_{i})
- Solving linearized equation leads to a new guess for (α_{i}, β_{i})
- Method will only converge to a local solution if (i) the initial guess is sufficiently close and (ii) linearized matrices are well-conditioned (i.e. nonsingular).
- The accuracy of the approximation is evaluated by the convergence of the solution with increasing meshsize (N).

DEA Modeling

H. S. Park, Z. Suo, J. Zhou, P. A. Klein, "A dynamic finite element method for inhomogenous deformationand electromechanical instability of dielectric elastomer transducers," Int. J. Solids \& Struct. 49 2187-2194 (2012).

$\mathrm{N}_{\mathrm{a}}=$ shape (basis) function

FEA Discretization:
$\mathbf{x}(\mathbf{X}, t)-\mathbf{X}=\sum N_{a}(\mathbf{X}) \mathbf{u}_{a}(t)$
$\Phi(\mathbf{X}, t)=\sum N_{a}(\mathbf{X}) \Phi_{a}(t)$

Weight (test) functions:

$$
\begin{aligned}
& \xi_{i}(\mathbf{X})=\sum N_{a}(\mathbf{X}) \xi_{i a}, \\
& \eta(\mathbf{X})=\sum N_{a}(\mathbf{X}) \eta_{a}
\end{aligned}
$$

_D_VEC $2.483 e+01$ $1.898 \mathrm{e}+01$ $1.314 \mathrm{e}+01$ $7.297 e+00$ $1.455 \mathrm{e}+00$

Free Energy

Arruda-Boyce Model: $\frac{W_{\text {stretch }}}{\mu}=\frac{1}{2}(I-3)+\frac{1}{20 N}\left(I^{2}-9\right)+\frac{11}{1050 N^{2}}\left(I^{3}-27\right)$
(Helmholtz)

$$
+\frac{19}{7000 N^{3}}\left(I^{4}-81\right)+\frac{519}{673750 N^{4}}\left(I^{5}-243\right)
$$

Incompressability "Penalty"
Total Free Energy: $\hat{W}(\mathbf{C}, \tilde{\mathbf{E}})=W_{\text {stretch }}(I)+\overbrace{\frac{1}{2} \lambda(\log J)^{2}-2 W_{\text {stretch }}^{\prime}(3) \log J} \begin{aligned} & \begin{array}{l}\text { Lagrangian Parameter } \\ \text { (Gibbs) } \\ \text { ("Hydrostatic Pressure") }\end{array}\end{aligned} \underbrace{\varepsilon}_{\text {Electrical Enthalpy }} J C_{I J}^{-1} \tilde{E}_{I} \tilde{E}_{J}$
$1^{\text {st }}$ Piola-Kirchoff Stress: $\quad s_{i j}=2 F_{i L} \frac{\partial \hat{W}(\mathbf{C}, \tilde{\mathbf{E}})}{\partial C_{J L}} ; \quad \mathbf{C}=\mathbf{F}^{\top} \mathbf{F}$
Electrical Displacement: $\quad \tilde{D}_{J}=-\frac{\partial \hat{W}(\mathbf{C}, \tilde{\mathbf{E}})}{\partial \tilde{E}_{J}}$
"Right Cauchy-Green Tensor"

Governing Equation

Weak Form of PDEs:

Stress Balance:
$\frac{\xi_{i}}{\text { Body Force (gravity) }} d V=\int\left(B_{i}-\rho \frac{\partial^{2} x_{i}}{\partial t^{2}}\right) \xi_{i} d V+\int T_{i} \xi_{i} d A$

$$
-\int \tilde{D}_{I} \frac{\partial \eta}{\partial X_{I}} d V=\int q \eta d V+\int \underbrace{\omega \eta d A}_{\text {Space Charge }}
$$

Matrix Form: $\mathbf{g}(\mathbf{u}, \Phi, t)=\mathbf{M a}$

$$
\mathbf{h}(\mathbf{u}, \Phi, t)=0
$$

Root Finding

Matrix Form:

$$
\begin{aligned}
& \mathbf{g}(\mathbf{u}, \Phi, t)=\mathbf{M a}^{\mathbf{0}} \\
& \mathbf{h}(\mathbf{u}, \Phi, t)=0
\end{aligned}
$$

Linearization:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathbf{K}_{m m} & \mathbf{K}_{m e} \\
\mathbf{K}_{m e}^{T} & \mathbf{K}_{e e}
\end{array}\right]\left[\begin{array}{c}
\Delta \mathbf{u} \\
\Delta \Phi
\end{array}\right]=\left[\begin{array}{l}
\mathbf{f}_{m} \\
\mathbf{f}_{e}
\end{array}\right]} \\
& \mathbf{K}_{\mathrm{mm}}=\int H_{i j L} \frac{\partial \mathbf{N}_{a}}{\partial X_{j}} \frac{\partial N_{b}}{\partial X_{L}} d V \\
& \mathbf{K}_{\mathrm{me}}=-\int_{V} e_{k l} \frac{\partial \mathrm{~N}_{a}}{\partial X_{J}} \frac{\partial N_{b}}{\partial X_{L}} d V \\
& \mathbf{K}_{\text {ee }}=-\int_{V} \varepsilon_{\nu} \frac{\partial N_{a}}{\partial X_{J}} \partial N_{b} d V \\
& H_{j l L}=2 \delta_{i k} \frac{\partial \hat{W}(\mathbf{C}, \tilde{\hat{E}})}{\partial C_{j \mu}}+4 F_{i M} F_{k N} \frac{\partial^{2} \hat{W}(\mathbf{C}, \tilde{\mathbf{E}})}{\partial C_{M} \partial C_{L N}} \\
& e_{j l}=-2 F_{i M} \frac{\partial^{2} \hat{W}(\mathbf{C}, \tilde{\mathbf{E}})}{\partial C_{m} \partial \bar{E}_{l}}, \\
& \varepsilon_{\mu l}=-\frac{\partial^{2} \hat{W}(\mathbf{C}, \tilde{\mathbf{E}})}{\partial \bar{E}_{j} \tilde{E}_{l}} \\
& \mathbf{f}_{\mathrm{m}}=\quad \int_{V} B_{i} N_{a} d V+\int_{A} T_{i} N_{a} d A-\int_{V}{ }_{V} \frac{\partial N_{V}}{\partial X_{J}} d V \\
& \mathbf{f}_{\mathrm{e}}=\quad \int_{V} q N_{a} d V+\int_{A} \omega N_{a} d A+\int_{V} \tilde{D}_{J} \frac{\partial N_{a}}{\partial X_{J}} d V
\end{aligned}
$$

- Find roots using Newton-Raphson method (i.e. solve linearized equation at each iteration)
- Instability when Hessian becomes singular

Results

(c)

(d)

Results

CAD MODELING - ISSUES

No algebraic solution

- Scaling laws and design rules?
- How will changing a material property or geometric dimension alter performance?

Takes too long

- Computationally intensive
- Requires hours to run a simulation
- Simulation must be repeated for even minor design changes
- Solution doesn't always converge

Difficult to validate

- No method to independenty validate solution
- Dependent on accuracy of assumptions/input
- "Garbage in, garbage out"

Discretize!

- Treat each limb as an individual element

Use "Reduce Dimensional" Models

- Euler-Bernoulli Beam Theory
- Kirchoff Plate Theory
- Coulomb’s Friction Law
- Hertzian Contact Theory

Ensure Compatibility

- Attached elements must be kinematically compatible
- Transfer of equal-and-opposite loads

Use ODE solvers in MATLAB

- Runga-Kutta (ode45)
- Finite difference (bvp4c)
- Avoid PDEs whenever possible!

EULER-BERNOULL BEAM THEORY

$$
\begin{aligned}
& \mathrm{v}=\text { deflection } \\
& \theta=\frac{\mathrm{dv}}{\mathrm{dx}}=\text { slope } \\
& \kappa=\frac{\mathrm{d} \theta}{\mathrm{dx}}=\frac{1}{\rho}=\text { curvature }
\end{aligned}
$$

$\rho=$ radius of curvature

$$
\kappa=\frac{\mathrm{d} \theta}{\mathrm{dx}^{2}}=\frac{\mathrm{d}^{2} \mathrm{v}}{\mathrm{dx}^{2}} \equiv \frac{\mathrm{M}}{\mathrm{EI}}
$$

Deflection are determined by calculating the internal bending moment $\mathrm{M}=\mathrm{M}(\mathrm{x})$.

Examples

$$
\mathrm{M}=\mathrm{M}_{0}
$$

$\frac{\mathrm{d}^{2} \mathrm{v}}{\mathrm{dx}^{2}}=\frac{\mathrm{M}_{0}}{\mathrm{EI}}$
$\mathrm{v}(0)=\left.\frac{\mathrm{dv}}{\mathrm{dx}}\right|_{\mathrm{x}=0}=0$

$\mathrm{M}=\mathrm{V}(\mathrm{L}-\mathrm{x})$
$\frac{d^{2} v}{\mathrm{dx}^{2}}=\frac{\mathrm{V}}{\mathrm{EI}}(\mathrm{L}-\mathrm{x})$
$\mathrm{v}(0)=\left.\frac{\mathrm{dv}}{\mathrm{dx}}\right|_{\mathrm{x}=0}=0$

$\mathrm{M}=-\mathrm{w}(\mathrm{L}-\mathrm{x})^{2} / 2$
$\frac{d^{2} v}{d x^{2}}=-\frac{w}{2 E I}(L-x)^{2}$
$\mathrm{v}(0)=\left.\frac{\mathrm{dv}}{\mathrm{dx}}\right|_{\mathrm{x}=0}=0$

ELASTICA

For large deflections, use Elastica theory

In both Elastica and Linear Beam Theory, $\mathrm{M}=\mathrm{D} \kappa$, where

$$
\mathrm{M}=\mathrm{M}(\xi) \quad \text { and } \quad \kappa=\mathrm{d} \theta / \mathrm{ds}
$$

The difference between the two theories is how we calculate M and θ.

Linear Beam Theory
$\mathrm{dv} / \mathrm{ds}=\theta$
M calculated in Lagrangian
Description (Ref. Placement)

Elastica

$\mathrm{dv} / \mathrm{ds}=\sin (\theta)$
M calculated in Eulerian
Description (Current)

Linear Beam Theory

$\mathrm{M}=\mathrm{V}(\mathrm{L}-\mathrm{s})$
$\frac{d \theta}{d s}=\frac{V}{D}(L-s)$
Converge for small deflection: $\cos (\theta) \approx 1$
$\mathrm{dM} / \mathrm{ds} \approx-\mathrm{V} \Rightarrow \mathrm{M}=\mathrm{C}_{1}-\mathrm{Vs}$
$\Rightarrow \mathrm{d} \theta / \mathrm{ds}=-(\mathrm{V} / \mathrm{D})(\mathrm{L}-\mathrm{s})$

$$
-\mathrm{T}
$$

$$
\mathrm{M}(\mathrm{~L})=0 \Rightarrow \mathrm{C}_{1}=\mathrm{Ls}
$$

$\mathrm{M}+\mathrm{M}_{, \mathrm{s}} \mathrm{ds}$

$$
\begin{aligned}
\frac{\mathrm{dM}}{\mathrm{ds}} & =-\mathrm{V} \cos (\theta) \\
\frac{\mathrm{d}^{2} \theta}{\mathrm{ds}^{2}} & =-\frac{\mathrm{V}}{\mathrm{D}} \cos (\theta)
\end{aligned}
$$

$$
\mathrm{C}_{\mathrm{V}}^{\mathrm{M}}
$$

In general, $\frac{\mathrm{d}^{2} \theta}{\mathrm{ds}^{2}}=\mathrm{k}_{1} \sin (\theta)+\mathrm{k}_{2} \cos (\theta)$ (non-linear 2 ${ }^{\text {nd }}$-order ODE)

Must solve for $\theta(0)=0$ and $\theta^{\prime}(\mathrm{L})=\mathrm{M}_{\mathrm{L}}$
For pure shear, is determined by solving the following boundary-value problem (BVP):

$$
\frac{\mathrm{d}^{2} \theta}{\mathrm{ds}^{2}}=-\frac{\mathrm{V}}{\mathrm{D}} \cos (\theta) \quad \theta(0)=0 \quad \theta^{\prime}(\mathrm{L})=0
$$

solid = Elastica
dashed $=$ Linear Beam Theory $\rightarrow\left\{y=\frac{V s^{2}}{6 D}(3 L-s)\right.$

We typically solve nonlinear BVPs in Matlab using bvp4c:
function elastica
global D V RO
$\mathrm{n}=100$;
L = 1;
D = 1;
V = 2;
$\mathrm{s}=$ linspace ($0, \mathrm{~L}, \mathrm{n}$);
ds $=\mathrm{L} /(\mathrm{n}-1)$;

```
solinit = bvpinit(s,@axial_init);
sol = bvp4c(@axial_ode,@axial_bc,solinit);
```

S = deval (sol,s);
theta $=S(1,:)$;
kappa $=$ S(2,:);

$$
\frac{\mathrm{d}^{2} \theta}{\mathrm{ds}^{2}}=-\frac{\mathrm{V}}{\mathrm{D}} \cos (\theta) \quad \theta(0)=0 \quad \theta^{\prime}(\mathrm{L})=0
$$

Matlab solves $1^{\text {st }}$ order ODEs (scalars or vectors). Convert:

$$
\mathrm{z}=\binom{\theta}{\theta^{\prime}} \Rightarrow \mathrm{z}^{\prime}=\binom{\mathrm{z}_{2}}{-\frac{\mathrm{V}}{\mathrm{D}} \cos \left(\mathrm{z}_{1}\right)}
$$

$$
z_{1}(0)=0 \quad z_{2}(L)=0
$$

```
solinit = bvpinit(s,@axial_init);
sol = bvp4c(@axial_ode,@axial_bc,solinit);
```

\% --
function dzdr = axial_ode(s,z)
global D V
$\mathrm{dzdr}=[\mathrm{z}(2) ;-(\mathrm{V} / \mathrm{D}) * \cos (\mathrm{z}(1))]$;

$$
\frac{\mathrm{d}^{2} \theta}{\mathrm{ds}^{2}}=-\frac{\mathrm{V}}{\mathrm{D}} \cos (\theta)
$$

\%
function res $=$ axial_bc (z0, zL)
res $=[\mathrm{zO}(1) ; \quad \mathrm{zL}(2)$;

$$
\theta(0)=0 \quad \theta^{\prime}(L)=0
$$

\%
function yinit = axial_init(s)
yinit $=\left[\begin{array}{ll}0 ; & 0\end{array}\right]$;

S = deval (sol,s);
theta $=S(1,:)$;
kappa = S(2,:);
$\mathrm{x}=\operatorname{tril}(\operatorname{ones}(\mathrm{n}, \mathrm{n})) *(\cos ($ theta)) '*ds;
$y=\operatorname{tril}(\operatorname{ones}(n, n)) *(\sin ($ theta) $)$ '*ds;
figure (1) hold on plot($x, y,{ }^{\prime} \mathbf{k}^{\prime}$)

PLATE THEORY

Deflection: $\mathrm{v}=\mathrm{v}(\mathrm{x}, \mathrm{y})$

Estimate deflection using Rayleigh-Ritz method. For a rectangular plate with
 weight per unit area p :

$$
\Pi=\iint\left\{\frac{D}{2}\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)^{2}-v p\right\} d x d y
$$

Suppose that a rectangular plate with simple

This implies

$$
\begin{gathered}
\Pi=\int_{0}^{a} \int_{0}^{b} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left\{\frac{D}{2}\left[a_{m n}\left(\frac{m^{2} \pi^{2}}{a^{2}}+\frac{n^{2} \pi^{2}}{b^{2}}\right) \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right)\right]^{2}\right. \\
\left.-p_{0} a_{m n} \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right)\right\} d x d y
\end{gathered}
$$

Integrating, it follows that

$$
\Pi=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left\{\frac{\pi^{4} a b D}{8} a_{m n}^{2}\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right)^{2}-\frac{4 p_{0} a b}{\pi^{2} m n} a_{m n}\right\}
$$

for $m, n=1,3, \ldots$
At equilibrium, $\frac{\mathrm{d} \Pi}{\mathrm{da}_{\mathrm{mn}}}=0$
Solving for a_{mn} yields

$$
\mathrm{a}_{\mathrm{mn}}=\frac{16 \mathrm{p}_{0}}{\pi^{6} \mathrm{mnD}\left[(\mathrm{~m} / \mathrm{a})^{2}+(\mathrm{n} / \mathrm{b})^{2}\right]^{2}}
$$

$$
\begin{array}{r}
\mathrm{v}=\sum_{\mathrm{m}=1}^{\infty} \sum_{\mathrm{n}=1}^{\infty} \frac{16 p_{0}}{\pi^{6} \mathrm{mnD}\left[(\mathrm{~m} / \mathrm{a})^{2}+(\mathrm{n} / \mathrm{b})^{2}\right]^{2}} \sin \left(\frac{\mathrm{~m} \pi \mathrm{x}}{\mathrm{a}}\right) \sin \left(\frac{\mathrm{n} \pi y}{\mathrm{~b}}\right) \\
\text { for } \mathrm{m}, \mathrm{n}=1,3, \ldots
\end{array}
$$

Review of actuator technologies
Pneumatic • DEA •SMA • PMC • Bio-hybrid

Representations of Soft Robot Limbs Euler-Bernouli Beam • Elastica • Plate/Shell

Simulation of Soft Robot Limbs Kinematics • Tribology • Analysis (ODE/PDE)

$S O F \vdash$ ROBOT GRIPPER

open: $\left(\kappa_{0}\right)_{\text {open }}=0$
closed: $\left(\kappa_{0}\right)_{\text {closed }}=\kappa_{0}>0$

Deflection: $\mathrm{v}=\mathrm{v}(\mathrm{x})$

- What is $\mathrm{v}(\mathrm{x})$?
- What is the contact force F ?
- What is the gripping strength?

SOFF ROBOTGRIPPER

BCs	$\mathrm{v}(0)=\mathrm{v}(\mathrm{L})=\mathrm{v}^{\prime}(0)=0$
	$\mathrm{~m}(\mathrm{~L})=0 \Rightarrow \mathrm{v}^{\prime \prime}(\mathrm{L})=\kappa_{0}$

LINEAR BEAMTHEORY

$v^{\prime \prime \prime}=\frac{F}{D} \Rightarrow v=c_{0}+c_{1} x+c_{2} x^{2}+\frac{F}{6 D} x^{3}$
$v(0)=v^{\prime}(0)=0 \Rightarrow v=c_{2} x^{2}+\frac{F}{6 D} x^{3}$
$v(L)=0 \Rightarrow c_{2}=-\frac{F L}{6 D}$
$v=\frac{F}{6 D}\left(x^{3}-x^{2} L\right)$
$\mathrm{v}^{\prime \prime}(\mathrm{L})=\kappa_{0} \Rightarrow \mathrm{~F}=\frac{3 \mathrm{D} \kappa_{0}}{2 \mathrm{~L}} \quad \therefore \mathrm{~V}=\frac{\kappa_{0} \mathrm{x}^{2}}{4}\left(\frac{\mathrm{x}}{\mathrm{L}}-1\right)$

$\mu_{0} \mathrm{~F} \sim$ Mechanical sliding resistance of interlocking asperities $\tau \mathrm{A}_{\mathrm{t}} \sim$ interfacial shear strength

According to Contact Mechanics $\mathrm{A}_{\mathrm{t}} \approx \mathrm{A}_{0}+\alpha \mathrm{F}$ e.g. Greenwood-Williamson \& Johnson-Kendall-Roberts Theories

$$
\begin{aligned}
& \mathrm{V}=\mu_{0} \mathrm{~F}+\tau\left(\alpha \mathrm{F}+\mathrm{A}_{0}\right) \\
& \quad=\mu \mathrm{F}+\mathrm{V}_{0} \\
& \text { where } \mu=\mu_{0}+\tau \alpha \\
& \text { and } \mathrm{V}_{0}=\tau \mathrm{A}_{0}
\end{aligned}
$$

Ignoring the initial adhesion
(i.e. $V_{0} \approx 0$) slip occurs when

$$
\mathrm{V}>\mu \mathrm{F}=\frac{3 \mu \mathrm{D}}{0} 2 \mathrm{~L}
$$

Limitations of Linearized theory:

- Kinematics not accurate for large deflection
- Does not account for influence of axial load during pick \& place operations

Two Finger Gripper

Finger ~ Naturally Curved Elastic rod

- Length L, curvature κ_{0}
- Natural curvature controlled by actuator
- open: $\left(\kappa_{0}\right)_{\text {open }}$
- closed: $\left(\kappa_{0}\right)_{\text {closed }}$
- Flexural rigidity $\mathrm{D}=\mathrm{El}$
- $\mathrm{E}=$ Young's Modulus
- $I=w^{3} / 12=$ Area Moment of Inertia
- Fixed slope at base

- Contact loads F and V at the tip
- F = normal reaction force to prevent interpenetration
- $\mathrm{V}=$ tangential frictional resistance to sliding
- Large deflection bending
- Small angle approximation and Euler-Bernoulli beam theory are not valid
- Use Elastica theory - planar bending; large angle deflection; small bending strains

1 Flexible Bending Actuator. A flexible bending actuator can be treated as an inextensible rod with a natural bending curvature κ_{0} and flexural rigidity D . Let $\mathrm{L}=5 \mathrm{~cm}, \mathrm{D}=4 \times 10^{-6} \mathrm{Nm}^{2}, \kappa_{0}=60 \mathrm{~m}^{-1}$.

Suppose that point loads F and V are applied to the free end, as shown. The slope $\theta=\theta(\mathrm{s})$ is determined by minimizing the functional

$$
\begin{aligned}
& \Pi=\Pi(\kappa)=\int_{0}^{\mathrm{L}} \frac{1}{2} \mathrm{D}_{\mathrm{eq}}\left(\kappa-\kappa_{0}\right)^{2} \mathrm{ds}-\mathrm{Fx}_{\mathrm{L}}-\mathrm{Vy}_{\mathrm{L}} \\
& \kappa=\mathrm{d} \theta / \mathrm{ds}=\theta^{\prime}
\end{aligned}
$$

$\left(\mathrm{x}_{\mathrm{L}}, \mathrm{y}_{\mathrm{L}}\right)$ are the coordinates of the end of the actuator

Step 1: Find $\theta=\theta(s ; F, V)$
Step 2: Find $x=x(s)$ and $y=y(s)$
Step 3: Find F such that $\mathrm{x}_{\mathrm{L}}:=\mathrm{x}(\mathrm{L})$ is equal to x_{0}
Step 4: Calculate maximum frictional resistance $\mu \mathrm{F}$. If $\mu \mathrm{F}>\mathrm{V}$ then contact will slip

Step 1: Find $\theta=\theta(\mathrm{s} ; \mathrm{F}, \mathrm{V})$

$$
\begin{aligned}
& \Pi=\Pi(\kappa)=\int_{0}^{L} \frac{1}{2} D_{\text {eq }}\left(\kappa-\kappa_{0}\right)^{2} d s-\mathrm{Fx}_{\mathrm{L}}-\mathrm{Vy}_{\mathrm{L}} \\
& \mathrm{x}_{\mathrm{L}}=\int_{0}^{\mathrm{L}} \cos \theta \mathrm{ds} \text { and } \mathrm{y}_{\mathrm{L}}=\int_{0}^{\mathrm{L}} \sin \theta \mathrm{ds}
\end{aligned}
$$

Determine θ that minimizes Π.

$$
\Pi=\int_{0}^{L}\left\{\frac{1}{2} D\left(\theta^{\prime}-\kappa_{0}\right)^{2}-F \cos \theta-V \sin \theta\right\} d s=\int_{0}^{L} \Gamma\left(\theta, \theta^{\prime}\right) d s
$$

Calculus of Variations:

$$
\begin{aligned}
\delta \Pi & =\int_{0}^{\mathrm{L}}\left\{\frac{\partial \Gamma}{\partial \theta} \delta \theta+\frac{\partial \Gamma}{\partial \theta^{\prime}} \delta \theta^{\prime}\right\} \mathrm{ds} \equiv 0 \\
& =\int_{0}^{\mathrm{L}}\left\{\frac{\partial \Gamma}{\partial \theta} \delta \theta+\frac{\mathrm{d}}{\mathrm{ds}}\left(\frac{\partial \Gamma}{\partial \theta^{\prime}} \delta \theta\right)-\left[\frac{\mathrm{d}}{\mathrm{ds}}\left(\frac{\partial \Gamma}{\partial \theta^{\prime}}\right)\right] \delta \theta\right\} \mathrm{ds} \equiv 0 \\
& =\left(\frac{\partial \Gamma}{\partial \theta^{\prime}}\right)_{\mathrm{s}=\mathrm{L}} \delta \theta(\mathrm{~L})-\left(\frac{\partial \Gamma}{\partial \theta^{\prime}}\right)_{\mathrm{s}=0} \delta \theta(0)+\int_{0}^{\mathrm{L}}\left\{\frac{\partial \Gamma}{\partial \theta}-\frac{\mathrm{d}}{\mathrm{ds}}\left(\frac{\partial \Gamma}{\partial \theta^{\prime}}\right)\right\} \delta \theta \mathrm{ds} \equiv 0
\end{aligned}
$$

Step 1: Find $\theta=\theta(\mathrm{s} ; \mathrm{F}, \mathrm{V})$

$$
\begin{aligned}
& \theta(0)=0 \Rightarrow \delta \theta(0)=0 \\
& \Rightarrow \delta \Pi=\left(\frac{\partial \Gamma}{\partial \theta^{\prime}}\right)_{\mathrm{s}=\mathrm{L}} \delta \theta(\mathrm{~L})+\int_{0}^{\mathrm{L}}\left\{\frac{\partial \Gamma}{\partial \theta}-\frac{\mathrm{d}}{\mathrm{ds}}\left(\frac{\partial \Gamma}{\partial \theta^{\prime}}\right)\right\} \delta \theta \mathrm{ds} \\
& \delta \Pi=0 \forall \delta \theta \Rightarrow\left\{\begin{array}{c}
\left(\frac{\partial \Gamma}{\partial \theta^{\prime}}\right)_{\mathrm{s}=\mathrm{L}}=0 \\
\frac{\partial \Gamma}{\partial \theta}-\frac{\mathrm{d}}{\mathrm{ds}}\left(\frac{\partial \Gamma}{\partial \theta^{\prime}}\right)=0
\end{array}\right.
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{\partial \Gamma}{\partial \theta}=\mathrm{F} \sin \theta-\mathrm{V} \cos \theta & \left(\frac{\partial \Gamma}{\partial \theta^{\prime}}\right)_{\mathrm{s}=\mathrm{L}}=0 \Rightarrow \mathrm{D}\left\{\theta^{\prime}(\mathrm{L})-\kappa_{0}\right\}=0 \quad \therefore \theta^{\prime}(\mathrm{L})=\kappa_{0} \\
\frac{\partial \Gamma}{\partial \theta^{\prime}}=\mathrm{D}\left(\theta^{\prime}-\kappa_{0}\right)
\end{array}
$$

$$
\frac{\partial \Gamma}{\partial \theta}-\frac{\mathrm{d}}{\mathrm{ds}}\left(\frac{\partial \Gamma}{\partial \theta^{\prime}}\right)=0 \Rightarrow \mathrm{~F} \sin \theta-\mathrm{V} \cos \theta-\mathrm{D} \theta^{\prime \prime}=0
$$

$$
\therefore \theta^{\prime \prime}-\frac{\mathrm{F}}{\mathrm{D}} \sin \theta+\frac{\mathrm{V}}{\mathrm{D}} \cos \theta=0
$$

$$
\theta^{\prime \prime}-\frac{\mathrm{F}}{\mathrm{D}} \sin \theta+\frac{\mathrm{V}}{\mathrm{D}} \cos \theta=0 \quad \theta(0)=0 \quad \theta^{\prime}(\mathrm{L})=\kappa_{0}
$$

In MATLAB, use bvp4c to solve θ for $0 \leq s \leq L$:
Step 1a: Define system parameters \& variables - F, V, D, κ_{0}, L, s
Step 1b: Guess Solution

```
solinit = bvpinit(s,@mat4init);
%-------------------------------
function yinit = mat4init(s)
yinit = [ kappa0*s; kappa0];
```

Step 1c: Define ODE \& BCs

```
let z = (0 旦') s.t. }\mp@subsup{\textrm{z}}{1}{\prime}=\mp@subsup{\textrm{z}}{2}{}\mathrm{ and }\mp@subsup{z}{2}{\prime}=(\textrm{F}/\textrm{D})\operatorname{sin}(\mp@subsup{\textrm{z}}{1}{})-(V/D)\operatorname{sin}(\mp@subsup{\textrm{z}}{1}{}
function dzds = mat4ode(s,z)
dzds = [ z(2); (F/D)*sin(z(1)) - (V/D)* cos(z(1)) ];
function res = mat4bc(za,zb)
res = [ za(1); zb(2)-kappa0 ];
```


Boundary Value Problem

Step 1d: Solve for z

```
sol = bvp4c(@mat4ode,@mat4bc,solinit);
```

Step 1e: Obtain θ

```
z = deval (sol,s);
theta = z(1,:);
```

Step 1f: Plot θ vs. s

```
figure(1); hold on
plot(s*1e3,theta,'k-')
xlabel('s (mm)')
ylabel('\theta (rad)')
```

*Use global to pass system parameters (i.e. $\mathrm{F}, \mathrm{V}, \mathrm{L}, \ldots$) between functions

Step 2: Find $x=x(s)$ and $y=y(s)$

Given $\theta=\theta(s)$, we can find x and y by integration:

$$
x(s)=\int_{0}^{s} \cos \theta(\hat{s}) d \hat{s} \quad \text { and } \quad y(s)=\int_{0}^{s} \sin \theta(\hat{s}) d \hat{s}
$$

Shortcut: Let $s=\operatorname{linspace}(0, L, n)$ and $d s=L /(n-1)$

$$
\begin{aligned}
\left\{\begin{array}{c}
\mathrm{s}_{1} \\
\mathrm{~s}_{2} \\
\mathrm{~s}_{3} \\
\vdots \\
\mathrm{~s}_{\mathrm{n}}
\end{array}\right\} & =\left\{\begin{array}{c}
\mathrm{x}\left(\mathrm{~s}_{1}\right)=0 \\
\mathrm{ds} \\
2 \mathrm{ds} \\
\vdots \\
(\mathrm{n}-1) \mathrm{ds}=\mathrm{L}
\end{array}\right\}\left\{\begin{array}{c}
\mathrm{x}\left(\mathrm{~s}_{2}\right) \\
\mathrm{x}\left(\mathrm{~s}_{2}\right) \\
\vdots \\
\mathrm{x}\left(\mathrm{~s}_{\mathrm{n}}\right)
\end{array}\right\}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
1 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
1 & 1 & \cdots & 1
\end{array}\right]\left\{\begin{array}{c}
\cos \theta\left(\mathrm{s}_{1}\right) \\
\cos \theta\left(\mathrm{s}_{2}\right) \\
\vdots \\
\cos \theta\left(\mathrm{s}_{\mathrm{n}-1}\right)
\end{array}\right\} \mathrm{ds} \\
\mathrm{x} & =\left[0 ; \operatorname{tril}(\operatorname{ones}(\mathrm{n}-1, \mathrm{n}-1))^{*} \cos (\operatorname{theta}(1: \mathrm{n}-1))^{\prime} * \mathrm{ds}\right] ; \\
\mathrm{y} & =\left[0 ; \operatorname{tril}(\operatorname{ones}(\mathrm{n}-1, \mathrm{n}-1))^{*} \sin (\operatorname{theta}(1: \mathrm{n}-1))^{\prime *} \mathrm{ds}\right] ;
\end{aligned}
$$

Step 2: Find $x=x(s)$ and $y=y(s)$

Step 3: Find F such that $\mathrm{x}_{\mathrm{L}}:=\mathrm{x}(\mathrm{L})$ is equal to x_{0}

$$
\mathrm{x}_{\mathrm{L}}=\int_{0}^{\mathrm{L}} \cos \theta \mathrm{ds} \equiv \mathrm{x}_{0}
$$

In MATLAB, use fzero:

```
F_guess = 1e-3;
F = fzero(@get_x0,F_guess);
% --------------------------
function res = get_x0(f)
xL = sum(cos(theta))*ds;
res = xL - x0;
```

Step 4: Calculate maximum frictional resistance $\mu \mathrm{F}$. If $\mu \mathrm{F}>\mathrm{V}$ then contact will slip

3-SEGMENT UNDULATING ROBOT

Polyethylene

Gelatin

3-Segment Undulating Robot (2D Model)

2 Limb Pairs \& 1 Torso $\rightarrow 3$ Segments

Segments: $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$

- Lengths L_{i}
- $\mathrm{s}=$ arclength (left to right)
- $\mathrm{L}=\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}$
- $\mathrm{S}_{1}=\left[0, \mathrm{~L}_{1}\right)$
- $\mathrm{S}_{2}=\left[\mathrm{L}_{1}, \mathrm{~L}_{1}+\mathrm{L}_{2}\right)$
- $\mathrm{S}_{3}=\left[\mathrm{L}_{1}+\mathrm{L}_{2}, \mathrm{~L}\right]$

3-Segment Undulating Robot (2D Model)

- Elastic with tunable flexural rigidity $\mathrm{D}_{\mathrm{i}}=\mathrm{D}\left(\mathrm{p}_{\mathrm{i}}\right)$ and natural curvature $\kappa_{i}=\kappa\left(p_{i}\right)$
- $p_{i}=$ signal input (i.e. pressure, voltage, current, ...)
- $y_{i}=y_{i}(s)$ vertical deflection

○ $\mathrm{m}_{\mathrm{i}}=\mathrm{D}\left(\mathrm{y}_{\mathrm{i}}^{\prime \prime}-\mathrm{K}_{\mathrm{i}}\right)=$ internal bending moment of $\mathrm{i}^{\text {th }}$ segment

- Gravitational loading per unit length: $w=(\rho w t) g$
- $\rho=$ mass density
- $\mathrm{w}=$ limb width

○ $\mathrm{t}=$ limb thickness
○ $\mathrm{g}=$ gravity

Step 1: At the start of each time step, assume point contact at the ends and calculate the solution $\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}$ for the following BCs

Kinematic

$$
\begin{aligned}
& \mathrm{y}_{1}(0)=\mathrm{y}_{3}(\mathrm{~L})=0 \\
& \mathrm{y}_{1}\left(\mathrm{~L}_{1}\right)=\mathrm{y}_{2}\left(\mathrm{~L}_{1}\right) \\
& \mathrm{y}_{2}\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right)=\mathrm{y}_{3}\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right) \\
& \mathrm{y}_{1}^{\prime}\left(\mathrm{L}_{1}\right)=\mathrm{y}_{2}^{\prime}\left(\mathrm{L}_{1}\right) \\
& \mathrm{y}_{2}^{\prime}\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)=\mathrm{y}_{3}^{\prime}\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)
\end{aligned}
$$

Static/Natural
$y_{1}^{\prime \prime}(0)=\kappa_{1}$
$y_{3}^{\prime \prime}(\mathrm{L})=\kappa_{3}$
$D_{1}\left\{y_{1}^{\prime \prime}\left(L_{1}\right)-\kappa_{1}\right\}=D_{2}\left\{y_{2}^{\prime \prime}\left(L_{1}\right)-\kappa_{2}\right\}$
$\mathrm{D}_{2}\left\{\mathrm{y}_{2}^{\prime \prime}\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)-\kappa_{2}\right\}=\mathrm{D}_{3}\left\{\mathrm{y}_{3}^{\prime \prime}\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)-\kappa_{3}\right\}$
$\mathrm{D}_{1} \mathrm{y}_{1}^{\prime \prime \prime}\left(\mathrm{L}_{1}\right)=\mathrm{D}_{2} \mathrm{y}_{2}^{\prime \prime \prime}\left(\mathrm{L}_{2}\right)$
$\mathrm{D}_{2} \mathrm{y}_{2}^{\prime \prime \prime}\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)=\mathrm{D}_{3} \mathrm{y}_{3}^{\prime \prime \prime}\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)$

Step 2: Determine Contact Mode
Mode 0: If $\mathrm{y}_{1}{ }^{\prime}(0)>0$ and $\mathrm{y}_{3}{ }^{\prime}(\mathrm{L})<0$, then robot makes tip contact at its ends (mode 0)

Otherwise, the robot is expected to be engaged in one of the following modes of contact:

Although other contact modes are possible, it is assumed that the limbs are actuated such that only configurations 0 -vi will be observed.

Mode i-iii: If $\mathrm{y}_{1}{ }^{\prime}(0)<0$ and $-\mathrm{y}_{1}{ }^{\prime}(0)>\mathrm{y}_{3}{ }^{\prime}(\mathrm{L})$, then left end of robot is expected to engage in "side contact." Additional unknown: length of side contact ξ.
ξ may span 1-3 segments. Since this is not known apriori, we must determine $\left\{\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}}\right.$, $\left.\mathrm{d}_{\mathrm{i}}\right\} \boldsymbol{\xi}$ for each mode:
(i) Replace $y_{1}(0)=0 \quad y_{1}^{\prime \prime}(0)=\kappa_{1}$

$$
\text { with } y_{1}(\xi)=0 \quad y_{1}^{\prime}(\xi)=0 \quad y_{1}^{\prime \prime}(\xi)=0
$$

$$
\begin{aligned}
& 0<\xi<\mathrm{L}_{1} \Rightarrow \text { mode i } \\
& \mathrm{L}_{1}<\xi<\mathrm{L}_{1}+\mathrm{L}_{2} \Rightarrow \text { mode ii } \\
& \mathrm{L}_{1}+\mathrm{L}_{2}<\xi<\mathrm{L} \Rightarrow \text { mode iii }
\end{aligned}
$$

(ii) $y_{2}(\xi)=y_{3}(L)=y_{2}^{\prime}(\xi)=y_{2}^{\prime \prime}(\xi)=0 \quad y_{3}^{\prime \prime}(L)=\kappa_{3}$

$$
\begin{aligned}
& \mathrm{y}_{2}\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right)=\mathrm{y}_{3}\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right) \\
& \mathrm{y}_{2}^{\prime}\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)=\mathrm{y}_{3}^{\prime}\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)
\end{aligned}
$$

$$
\mathrm{D}_{2}\left\{\mathrm{y}_{2}^{\prime \prime}\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)-\kappa_{2}\right\}=\mathrm{D}_{3}\left\{\mathrm{y}_{3}^{\prime \prime}\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)-\kappa_{3}\right\}
$$

$$
\mathrm{D}_{2} \mathrm{y}_{2}^{\prime \prime \prime}\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)=\mathrm{D}_{3} \mathrm{y}_{3}^{\prime \prime \prime}\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)
$$

(iii) $\mathrm{y}_{3}(\xi)=\mathrm{y}_{3}(\mathrm{~L})=\mathrm{y}_{3}^{\prime}(\xi)=\mathrm{y}_{3}^{\prime \prime}(\xi)=0$

$$
y_{3}^{\prime \prime}(\mathrm{L})=\kappa_{3}
$$

Mode iv-vi: If $\mathrm{y}_{3}{ }^{\prime}(\mathrm{L})>0$ and $-\mathrm{y}_{1}{ }^{\prime}(0)<\mathrm{y}_{3}{ }^{\prime}(\mathrm{L})$, then right end of robot is expected to bein "side contact."

$$
\begin{array}{ll}
\text { (iv) } & \mathrm{y}_{1}(0)=\mathrm{y}_{1}(\xi)=\mathrm{y}_{1}^{\prime}(\xi)=\mathrm{y}_{1}^{\prime \prime}(\xi)=0 \\
& \mathrm{y}_{1}^{\prime \prime}(0)=\kappa_{1} \\
\text { (v) } & \mathrm{y}_{1}(0)=\mathrm{y}_{2}(\xi)=\mathrm{y}_{2}^{\prime}(\xi)=\mathrm{y}_{2}^{\prime \prime}(\xi)=0 \\
& \mathrm{y}_{1}\left(\mathrm{~L}_{1}\right)=\mathrm{y}_{2}\left(\mathrm{~L}_{2}\right) \\
& \mathrm{y}_{1}^{\prime \prime}(\xi)=\kappa_{1} \\
& \mathrm{D}_{1}\left\{\mathrm{y}_{1}^{\prime \prime}\left(\mathrm{L}_{1}\right)-\kappa_{1}\right\}=\mathrm{D}_{2}\left\{\mathrm{y}_{2}^{\prime \prime}\left(\mathrm{L}_{1}\right)-\kappa_{2}\right\} \\
& \mathrm{D}_{1} \mathrm{y}_{1}^{\prime \prime \prime}\left(\mathrm{L}_{1}\right)=\mathrm{D}_{2} \mathrm{y}_{2}^{\prime \prime \prime}\left(\mathrm{L}_{1}\right)
\end{array}
$$

(vi) Replace $y_{3}(\mathrm{~L})=0 \quad y_{3}^{\prime \prime}(\mathrm{L})=\kappa_{1}$

$$
\text { with } y_{3}(\xi)=0 \quad y_{3}^{\prime}(\xi)=0 \quad y_{1}^{\prime \prime}(\xi)=0
$$

Step 3: Determine step length. Vertical deflection $y(s)$ of inextensible rods results in a change in horizontal separation Λ :

$$
\begin{aligned}
\Lambda= & \int_{0}^{\mathrm{L}_{1}}\left\{1-\frac{1}{2}\left(\mathrm{y}_{1}^{\prime}\right)^{2}\right\} \mathrm{ds}+\int_{\mathrm{L}_{1}}^{\mathrm{L}_{1}+\mathrm{L}_{2}}\left\{1-\frac{1}{2}\left(\mathrm{y}_{2}^{\prime}\right)^{2}\right\} \mathrm{ds} \\
& +\int_{\mathrm{L}_{1}+\mathrm{L}_{2}}^{L}\left\{1-\frac{1}{2}\left(\mathrm{y}_{3}^{\prime}\right)^{2}\right\} \mathrm{ds} .
\end{aligned}
$$

Step 4: Determine direction of motion. Assume Coulombic friction:
$\mathrm{V}_{\mathrm{t}}=$ sliding resistance of tip contact
$\tau \mathrm{a}=$ resistance of side contact

- $\tau=$ interfacial shear strength
- $a=$ length of side contact

End with larger sliding resistance remains fixed and the opposite slides to accommodate change in Λ.

Examples

Felt | non-slippery |
| :--- |
| sliding resistance scales with contact |
| Normalized resistance: $\mathrm{V}_{\mathrm{t}}=0, \tau=1$ |

Gelatin
slippery
deformable
sharp tip from point contact digs into substrate
flat (side) contact slides
Normalized resistance: $\mathrm{V}_{\mathrm{t}}=1, \tau=0$
Polyethylene mixed frictional resistance
Normalized resistance: $\mathrm{V}_{\mathrm{t}}=0.75, \tau=0.25$

Input

$$
\begin{aligned}
& \kappa_{i}=\alpha p_{i} \\
& D_{i}=D_{0}+\beta p_{i}
\end{aligned}
$$

Unitless analysis
$\mathrm{p}_{\mathrm{i}}, \alpha, \mathrm{D}_{0}, \beta$ are
"normalized"

Felt
$\mathrm{V}_{\mathrm{t}}=0, \tau=1$

Polyethylene
 $\mathrm{V}_{\mathrm{t}}=0.75, \tau=0.25$

Gelatin

$\mathrm{V}_{\mathrm{t}}=1, \tau=0$

