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•  Composition of Robot – Materials & constitutive properties
o  Elastomers, fluids, gas, rigid elements
o  Hyperelasticity – coefficients of elasticity, Poisson’s ratio
o  Dielectric, ferroelectric, or piezoelectric properties (e.g. electric permittivity)
o  Ferromagnetic properties
o  Shape memory or thermal properties (e.g. coefficient of thermal expansion)

•  State of Robot – Material shape and condition
o  Kinematics – shape & velocities

o  Reference placement – initial shape at time t0;  
composed of points X ∈ B0

o  Current placement – current shape at time t;  
composed of points x ∈ B

o  Displacement:  u = x – X
o  Internal voltage field, temperature distribution, magnetic state, …

Soft Robot 
Simulation



•  Physical Interactions – External loads and environmental 
conditions
o  Mechanical – contact forces (unilateral constraints, friction, collisions), 

fluid pressure, gravity
o  Electrical – applied electrical field or current (e.g. Maxwell stress, 

magnetic force)
o  Thermal – temperature change, supplied heat

•  Governing Physics – Balance Laws
o  Thermodynamics – 1st & 2nd Laws; Principle of Minimum Potential
o  Newton-Euler Equations – linear and angular momentum balance for 

entire robot as well as each volumetric or surface element
o  Maxwell Equations – balance of electric displacement and magnetic 

field



•  Position/Orientation of Robot – Global 
Coordinate Systems (COOS)
o  Lagrangian Description – coordinates of 

initial shape (t0):  X = X1i + X2j + X3k 
∇L	= (∂/∂X1)i + (∂/∂X2)j + (∂/∂X3)k  


o  Eulerian Description – coordinates of 
current shape (t):  x = x1i + x2j + x3k 
∇E	= (∂/∂x1)i + (∂/∂x2)j + (∂/∂x3)k 

“Deformation gradient”: F = ∇Lx

o  used to calculate the strain energy density: W = W(F)
o  Relates the gradient operators:  ∇L	= ∇EF
o  Relates final and initial volumes:  dV = JdV0, where J = det(F)
o  T1PK = ∂W/∂F is the “1st Piola Kirchoff Stress tensor”
o  By definition, Cauchy stress σ = J-1T1PKFT
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ref. A. Betram, Elasticity & Plasticity of Large Deformations 2nd Ed. (2008)

Another useful identity is the Piola transformation 
(related to Piola identity):

∇L ⋅T
1PK( )dV0 = ∇E ⋅σ( )dV

T
1PK

⋅dA0 = σ ⋅dA

The deformation gradient also relates the deformation of surface 
elements and divergence of the stress tensors:

Consider a surface element that deforms from dA0 = n0dA0 to 
dA = ndA.  According to Nanson’s formula, dA = JF-TdA0 . This implies 
the following identity:





W = strain energy density
Φ = Φ(x1,x2,x3) = voltage
E = ∇EΦ = electric field
ε = electric permittivity (2nd order tensor; could be anisotropic)
D = ε ⋅	E = electric displacement 
η = surface charge (i.e. charge q per unit area)
t = surface traction (stress applied to surface)

Π= W
B0

∫ dV0 −
1
2
D ⋅E

⎧
⎨
⎩

⎫
⎬
⎭B

∫ dV+ ηΦ− t ⋅ x{ }
∂B
∫ dA

•  Π = Π(x,Φ) – find position and voltage field that minimizes potential energy.
•  Determine change in Π when x → x + δx and Φ → Φ + δΦ.  
•  At equilibrium, corresponding change δΠ = 0.

Example:  DEA System



δΠ= T1PK : δ∇L x( ){ }
B0

∫ dV0 −
1
2
D ⋅ δ∇EΦ( )

⎧
⎨
⎩

⎫
⎬
⎭B

∫ dV+ ηδΦ− t ⋅ δx{ }
∂B
∫ dA

Note that x → x + δx and Φ → Φ + δΦ imply that 
∇Lx → ∇Lx + ∇Lδx and ∇EΦ → ∇EΦ + ∇EδΦ  

Product Rule:

∇L T
1PKδx{ }

B0

∫ dV0 = ∇L ⋅T
1PK( )δx{ }

B0

∫ dV0 + T1PK : ∇Lδx( ){ }
B0

∫ dV0

∇E DδΦ{ }
B
∫ dV = ∇E ⋅D( )δΦ{ }

B
∫ dV+ D ⋅ ∇EδΦ( ){ }

B
∫ dV



Divergence Rule: ∇L T
1PK
δx{ }

B0

∫ dV0 = T
1PK

⋅ n0( )δx{ }
∂B0

∫ dA0

⇒ D ⋅ ∇δΦ( ){ }
B
∫ dV = D ⋅ n( )δΦ{ }

∂B
∫ dA− ∇⋅D( )δΦ{ }

B
∫ dV

∇E DδΦ{ }
B
∫ dV = D ⋅ n( )δΦ{ }

∂B
∫ dA

⇒ T1PK : ∇Lδx( ){ }
B0

∫ dV0 = T
1PK

⋅ n0( )δx{ }
∂B0

∫ dA0 − ∇L ⋅T
1PK( )δx{ }

B0

∫ dV0

= σ ⋅ n( )δx{ }
∂B
∫ dA− ∇E ⋅σ( )δx{ }

B
∫ dV

Nanson  
& Piola 
identities



Substitute these back into the expression for δΠ:

δΠ= − ∇E ⋅σ( )δx + ∇E ⋅D( )δΦ{ }
B
∫ dV

+ D ⋅ n +η( )δΦ+ σ ⋅ n − t( ) ⋅ δx{ }
∂B
∫ dA

At equilibrium, δΠ must vanish for any arbitrary choice of δx and δΦ.
This implies the following Balance Laws:


∇E⋅σ = 0  for x ∈ B  σ⋅n = t     for x ∈ ∂B  
	∇E⋅D = 0   for x ∈ B  D⋅n = –η  for x ∈ ∂B  


Therefore, finding the displacements and voltages becomes a matter of solving 
a system of PDEs (“Strong Form”).  

The PDEs are either satisfied or not – we can’t evaluate the accuracy of an 
approximate solution with a single number.  



δΠ= T1PK : ∇Lδx( ){ }
B0

∫ dV0 −
1
2
D ⋅ ∇EδΦ( )

⎧
⎨
⎩

⎫
⎬
⎭B

∫ dV+ ηδΦ− t ⋅ δx{ }
∂B
∫ dA

To get an approximate solution, it makes more sense to work with the integral for 
δΠ.  This gives us a single number that we can use to evaluate the accuracy of 
our approximation:

Recall:  

The condition δΠ = 0 is known as the “Weak Form” of our governing equations:


(x, Φ) ~ unknown functions we need to solve for
(δx, δΦ) ~ “weight functions” that are arbitrary

Approximation

To get an approximate solution, we divide 
the domain into a finite # of triangular 
elements.

Between each node, (x, Φ, δx, δΦ) are 
treated as a linear combination of 
prescribed basis functions φi (e.g. lines, 
polynomials/splines).  



Finite Element Method

•  Here, (αi, βi) are unknown and (γi, φi) are arbitrary.
•  When we substitute these expressions into δΠ, the integral turns into a 

summation.  Therefore it can be computed by performing matrix operations.
•  After some matrix manipulation, the arbitrary values (γi, φi) drop out.  We 

perform a numerical root finding algorithm to solve for (αi, βi).
•  For nonlinear problems, this is typically done with a gradient descent 

technique, e.g. Newton-Rapson, Gauss-Newton iteration:
-  Residual is linearized about a certain guess for (αi, βi)
-  Solving linearized equation leads to a new guess for (αi, βi)
-  Method will only converge to a local solution if (i) the initial guess is 

sufficiently close and (ii) linearized matrices are well-conditioned (i.e. non-
singular).

•  The accuracy of the approximation is evaluated by the convergence of the 
solution with increasing meshsize (N).  

x = αiφi X( )
i=1

N

∑ Φ= βiφi X( )
i=1

N

∑ δx = γ
i
φi X( )

i=1

N

∑ δΦ= χiφi X( )
i=1

N

∑



DEA Modeling
H. S. Park, Z. Suo, J. Zhou, P. A. Klein, “A dynamic finite element method for inhomogenous deformationand 
electromechanical instability of dielectric elastomer transducers,” Int. J. Solids & Struct. 49 2187-2194 (2012).

2
@2WðC; ~EÞ
@CJK@~EI

¼ eJ~ELðC$1
KL C$1

IJ $ C$1
KI C$1

JL $ C$1
IL C$1

JK Þ ð28Þ

and

@2WðC; ~EÞ
@~EK@~EL

¼ eJC$1
IJ ð29Þ

5. Numerical results

We embed the above model into the Sandia-developed simula-
tion code Tahoe (2011) using regular meshes of 8-node hexahedral
elements. The values for the material constants in the free energy

in (26) were l = e = 1 and k = 1,000,000. In all cases where an ap-
plied potential boundary condition was applied, it is assumed that
the electrodes are sufficiently compliant such that they do not con-
strain the deformation of the dielectric elastomer film. Further-
more, the initial conditions for the mechanical domain were
always set to zero, i.e. the initial displacements and velocities of
all nodes were set to zero for all examples considered below.

5.1. Homogeneous deformation: static vs. dynamic comparison

Our first example is the homogeneous deformation of a dielec-
tric elastomer sandwiched between two compliant electrodes. The
stability of the homogeneous deformation has been analyzed ana-
lytically in Keplinger et al. (2012). The electrostatic boundary con-
ditions were specified such that the voltage was zero at one
electrode (on the $y surface), while the charge at the other elec-
trode (the +y surface) was increased monotonically. The dimen-
sions of the dielectric elastomer were l = w = h = 1, which was
discretized by a single 8-node hexahedral finite element. The pur-
pose of this example is to demonstrate the ability to capture the
electromechanical instability through the inclusion of inertial
effects.

The results as shown in Figs. 1–3 are similar to those obtained
by Zhou et al. (2008) in that as N is increased, the quasistatic cal-
culation fails before the electromechanical instability occurs due
to non-convergence of the solution; we note that the onset of the
electromechanical instability corresponds to a softening in the
voltage-charge curve in Figs. 1–3.

However, if the dynamic formulation is utilized, the large defor-
mation behavior and electromechanical instability is captured for
various values of N. In particular, it can be seen that for Figs. 1–3,
the dynamic formulation captures not only the initial softening
of the voltage vs. charge curve, but then the subsequent stiffening
that occurs at large values of applied charge. Because the dynamic
problem is time-dependent, the values shown in Figs. 1–3 corre-
spond to the converged values of potential and charge that result

Fig. 5. Voltage vs. charge curve corresponding to the deformation of the free-
standing 3D dielectric elastomer thin film subject to charge loading shown in Fig. 4.

Fig. 6. Time history of deformation leading to pull-in instability and failure of a free-standing 3D dielectric elastomer under potential loading. (a) Undeformed configuration,
(b–d) various stages of deformation leading to failure of the dielectric elastomer film.
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compared to the quasistatic case, and then present examples of
instability and inhomogeneous deformation.

2. Nonlinear field theory of dielectric elastomers

Our finite element method is formulated on the basis a nonlin-
ear electromechanical field theory (Suo et al., 2008); see a recent
review of the theory of dielectric elastomers (Suo, 2010). Here
we summarize the essential equations.We evolve in time the state
of a dielectric elastomer transducer subject to electromechanical
loads. Name each material particle of the transducer by its coordi-
nate X when the transducer is in a reference state. At time t, the
material particle moves to a place of coordinate x. The function
x(X, t) describes the deformation of the transducer in time. Define
the deformation gradient by

FiJ ¼
@xiðX; tÞ
@XJ

ð1Þ

Let U(X, t) be the electric potential of material particle X and time t.
Define the nominal electric field by

~EI ¼ $
@UðX; tÞ
@XI

ð2Þ

The nominal stress siJ satisfies the statement of virtual work:
Z

siJ
@ni

@XJ
dV ¼

Z
Bi $ q @

2xi

@t2

 !
nidV þ

Z
TinidA ð3Þ

where ni(X) is an arbitrary vector function, Bi the body force, q the
mass density, and Ti the traction. The nominal electric displacement
~DI satisfies the statement of virtual work:

$
Z

~DI
@g
@XI

dV ¼
Z

qgdV þ
Z

xgdA ð4Þ

where g(X) is an arbitrary scalar test function, q the volumetric
charge density, and x the surface charge density. In (3) and (4),
the integrals are carried out over material particles—that is, over
volume and surface in the reference state of the transducer. The
mechanical equation (3) includes inertia, while the electrical equa-
tion (4) is electrostatic. Essential boundary conditions can be ap-
plied via the displacement and electric potential, while natural
boundary conditions can be applied via traction and electric
charges.

To focus on main ideas, we will not be concerned with any ther-
mal effects. The thermodynamics of the dielectric elastomer is
specified by a free-energy function Ŵ . Associated with small
changes dF and d~E, the free energy changes by

dŴ ¼ siJdFiJ $ ~DJd~EJ ð5Þ

To ensure that the free energy is invariant with respect to rigid-
body rotation, the free energy depends on the deformation gradient
through the tensor CIJ = FkIFkJ. Consequently, (5) implies that

siJ ¼ 2FiL
@ŴðC; ~EÞ
@CJL

;

~DJ ¼ $
@ŴðC; ~EÞ

@~EJ

ð6Þ

Once the function ŴðC; ~EÞ is specified for a dielectric elastomer, (6)
gives the equations of state.

At a given state ðF; ~EÞ, (6) can be linearized as

DsiJ ¼ HiJkLDFkL $ eiJLD~EL;

D~DJ ¼ eiJLDFiL þ eJLD~EL

ð7Þ

where the tangent moduli are (Zhou et al., 2008)

HiJkL ¼ 2dik
@ŴðC; ~EÞ
@CJL

þ 4FiMFkN
@2ŴðC; ~EÞ
@CJM@CLN

;

eiJL ¼ $2FiM
@2ŴðC; ~EÞ
@CJM@~EL

;

eJL ¼ $
@2ŴðC; ~EÞ
@~EJ@~EL

ð8Þ

3. Finite-element discretization

We adopt the standard finite-element discretization for both
the displacement field and the electric potential:

xðX; tÞ $ X ¼
X

NaðXÞuaðtÞ;

UðX; tÞ ¼
X

NaðXÞUaðtÞ
ð9Þ

where Na(X) are shape functions, ua(t) is the nodal displacement
and Ua(t) is the nodal electric potential; the sum is taken over all
nodes. We adopt the same discretization for the test functions:

niðXÞ ¼
X

NaðXÞnia;

gðXÞ ¼
X

NaðXÞga

ð10Þ

This Bubnov–Galerkin approximation converts (3) and (4) into
the discretized form:
Z

siJ
@Na

@XJ
dV ¼

Z
BiNadV þ

Z
TiNadA$

X
€uib

Z
qNbNadV ð11Þ

$
Z

~DI
@Na

@XI
dV ¼

Z
qNadV þ

Z
xNadA ð12Þ

Denote the column of nodal values of displacement by u, that of
velocity by v, that of acceleration by a, and that of electric potential
by U. Eq. (11) is a nonlinear ordinary differential equation, which
relates nodal values of acceleration to a nonlinear function of the
nodal values of displacement and electric potential:

gðu;U; tÞ ¼Ma ð13Þ

The matrix M has elements of the form
R
qNbNadV. Eq. (12) is a non-

linear algebraic equation of the nodal values of displacement and
electric potential:

hðu;U; tÞ ¼ 0 ð14Þ

The coupled ordinary differential equation (13) and algebraic equa-
tion (14) evolve the two columns (u(t)) and U(t).

3.1. Quasistatic formulation

In the quasistatic formulation (i.e. neglecting inertia), (11) be-
comes a nonlinear algebraic equation of the nodal values of dis-
placement and electric potential. The simultaneous nonlinear
algebraic equations (11) and (12) may be solved by using the New-
ton–Raphson method (Vu et al., 2007; Zhou et al., 2008). In the
incremental form, (11) and (12) becomes

Kmm Kme

KT
me Kee

! "
Du
DU

! "
¼

fm

fe

! "
ð15Þ

The matrices Kmm, Kme, and Kee have elements of the forms,
respectively,

Z
HiJkL

@Na

@XJ

@Nb

@XL
dV ;$

Z

V
ekJL

@Na

@XJ

@Nb

@XL
dV ;$

Z

V
eJL
@Na

@XJ

@Nb

@XL
dV ð16Þ

The columns fm and fe have elements of the forms, respectively,
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changes dF and d~E, the free energy changes by
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FEA Discretization: Weight (test) functions:

Na = shape (basis) function



Free Energy

Arruda-Boyce Model:
(Helmholtz)

Wstretch

l ¼ 1
2
ðI # 3Þ þ 1

20N
ðI2 # 9Þ þ 11

1050N2 ðI
3 # 27Þ

þ 19
7000N3 ðI

4 # 81Þ þ 519
673750N4 ðI

5 # 243Þ ð23Þ

where l is the shear modulus, N is the number of links per polymer
chain and I = CKK. The Arruda–Boyce model reduces to the Neo-
Hookean model if N ?1.

The complete expression for the dielectric elastomer free en-
ergy can be written as

ŴðC;~EÞ¼WstretchðIÞþ
1
2
kðlogJÞ2#2W 0

stretchð3ÞlogJ# e
2

JC#1
IJ

~EI
~EJ ð24Þ

The incompressibility condition that is required for accurate model-
ing of dielectric elastomers is enforced approximately through the
parameter k, which represents the bulk modulus; specifically, it is

enforced through a penalty-like manner by taking the ratio of k/l
(or the ratio of the bulk modulus to the shear modulus) to be a large
value, typically on the order of 104–106, where the upper bound va-
lue of k/l = 106 is used in the present work to maximize the conver-
gence rate.

The free energy of the ideal dielectric elastomer given in (24)
neglects creep and other dissipative effects, in particular viscoelas-
ticity and current leakage. Dissipative effects can easily be included
in the free energy, see for example see Hong (2011) and Foo et al.
(2012) for dissipative effects. We also note that a comparison be-
tween the theory of the ideal dielectric elastomer and experiment
was recently made in a simple setting by Huang et al. (2012): a
membrane under equi-biaxial dead loads and ramping voltage.

The analytic expressions of the free energy derivatives that are
needed for the various stresses and moduli are now given as
follows

2
@ŴðC; ~EÞ
@CIJ

¼ 2W 0
stretchðIÞdIJ þ ðk log J # 2W 0

stretchð3ÞÞC
#1
IJ

þ eJ~EK
~ELðC#1

KI C#1
LJ #

1
2

C#1
KL C#1

IJ Þ ð25Þ

The nominal electric displacement can be written as

~DI ¼ eJ~EJC
#1
IJ ð26Þ

The tangent moduli that are required for the weak form can be
obtained by taking the second derivatives of the free energy func-
tion to give

4
@2WðC; ~WÞ
@CIJ@CKL

¼ 4W 00
stretchðIÞdIJdKL þ ð2W 0

stretchð3Þ # kln JÞ

& ðC#1
IK C#1

JL þ C#1
IL C#1

JK Þ þ kC#1
IJ C#1

KJ

þ eJ~EM
~EN

1
2

C#1
MNðC

#1
IK C#1

JL þ C#1
IL C#1

JK Þ þ C#1
MK C#1

NL C#1
IJ

!

þ C#1
MI C#1

NJ #
1
2

C#1
MNC#1

IJ

" #
C#1

KL

$
eJ~EM

~EN½C#1
MI ðC

#1
NK C#1

JL

þ C#1
NL C#1

JK Þ þ C#1
NJ ðC

#1
IK C#1

ML þ C#1
IL C#1

MKÞ( ð27Þ

Fig. 3. Deformation of a dielectric elastomer subject to applied charge loading for
N = 20 as obtained using static and dynamic FEM formulations.
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compared to the quasistatic case, and then present examples of
instability and inhomogeneous deformation.

2. Nonlinear field theory of dielectric elastomers

Our finite element method is formulated on the basis a nonlin-
ear electromechanical field theory (Suo et al., 2008); see a recent
review of the theory of dielectric elastomers (Suo, 2010). Here
we summarize the essential equations.We evolve in time the state
of a dielectric elastomer transducer subject to electromechanical
loads. Name each material particle of the transducer by its coordi-
nate X when the transducer is in a reference state. At time t, the
material particle moves to a place of coordinate x. The function
x(X, t) describes the deformation of the transducer in time. Define
the deformation gradient by

FiJ ¼
@xiðX; tÞ
@XJ

ð1Þ

Let U(X, t) be the electric potential of material particle X and time t.
Define the nominal electric field by

~EI ¼ $
@UðX; tÞ
@XI

ð2Þ

The nominal stress siJ satisfies the statement of virtual work:
Z

siJ
@ni

@XJ
dV ¼

Z
Bi $ q @

2xi

@t2

 !
nidV þ

Z
TinidA ð3Þ

where ni(X) is an arbitrary vector function, Bi the body force, q the
mass density, and Ti the traction. The nominal electric displacement
~DI satisfies the statement of virtual work:

$
Z

~DI
@g
@XI

dV ¼
Z

qgdV þ
Z

xgdA ð4Þ

where g(X) is an arbitrary scalar test function, q the volumetric
charge density, and x the surface charge density. In (3) and (4),
the integrals are carried out over material particles—that is, over
volume and surface in the reference state of the transducer. The
mechanical equation (3) includes inertia, while the electrical equa-
tion (4) is electrostatic. Essential boundary conditions can be ap-
plied via the displacement and electric potential, while natural
boundary conditions can be applied via traction and electric
charges.

To focus on main ideas, we will not be concerned with any ther-
mal effects. The thermodynamics of the dielectric elastomer is
specified by a free-energy function Ŵ . Associated with small
changes dF and d~E, the free energy changes by

dŴ ¼ siJdFiJ $ ~DJd~EJ ð5Þ

To ensure that the free energy is invariant with respect to rigid-
body rotation, the free energy depends on the deformation gradient
through the tensor CIJ = FkIFkJ. Consequently, (5) implies that

siJ ¼ 2FiL
@ŴðC; ~EÞ
@CJL

;

~DJ ¼ $
@ŴðC; ~EÞ

@~EJ

ð6Þ

Once the function ŴðC; ~EÞ is specified for a dielectric elastomer, (6)
gives the equations of state.

At a given state ðF; ~EÞ, (6) can be linearized as

DsiJ ¼ HiJkLDFkL $ eiJLD~EL;

D~DJ ¼ eiJLDFiL þ eJLD~EL

ð7Þ

where the tangent moduli are (Zhou et al., 2008)

HiJkL ¼ 2dik
@ŴðC; ~EÞ
@CJL

þ 4FiMFkN
@2ŴðC; ~EÞ
@CJM@CLN

;

eiJL ¼ $2FiM
@2ŴðC; ~EÞ
@CJM@~EL

;

eJL ¼ $
@2ŴðC; ~EÞ
@~EJ@~EL

ð8Þ

3. Finite-element discretization

We adopt the standard finite-element discretization for both
the displacement field and the electric potential:

xðX; tÞ $ X ¼
X

NaðXÞuaðtÞ;

UðX; tÞ ¼
X

NaðXÞUaðtÞ
ð9Þ

where Na(X) are shape functions, ua(t) is the nodal displacement
and Ua(t) is the nodal electric potential; the sum is taken over all
nodes. We adopt the same discretization for the test functions:

niðXÞ ¼
X

NaðXÞnia;

gðXÞ ¼
X

NaðXÞga

ð10Þ

This Bubnov–Galerkin approximation converts (3) and (4) into
the discretized form:
Z

siJ
@Na

@XJ
dV ¼

Z
BiNadV þ

Z
TiNadA$

X
€uib

Z
qNbNadV ð11Þ

$
Z

~DI
@Na

@XI
dV ¼

Z
qNadV þ

Z
xNadA ð12Þ

Denote the column of nodal values of displacement by u, that of
velocity by v, that of acceleration by a, and that of electric potential
by U. Eq. (11) is a nonlinear ordinary differential equation, which
relates nodal values of acceleration to a nonlinear function of the
nodal values of displacement and electric potential:

gðu;U; tÞ ¼Ma ð13Þ

The matrix M has elements of the form
R
qNbNadV. Eq. (12) is a non-

linear algebraic equation of the nodal values of displacement and
electric potential:

hðu;U; tÞ ¼ 0 ð14Þ

The coupled ordinary differential equation (13) and algebraic equa-
tion (14) evolve the two columns (u(t)) and U(t).

3.1. Quasistatic formulation

In the quasistatic formulation (i.e. neglecting inertia), (11) be-
comes a nonlinear algebraic equation of the nodal values of dis-
placement and electric potential. The simultaneous nonlinear
algebraic equations (11) and (12) may be solved by using the New-
ton–Raphson method (Vu et al., 2007; Zhou et al., 2008). In the
incremental form, (11) and (12) becomes

Kmm Kme

KT
me Kee

! "
Du
DU

! "
¼

fm

fe

! "
ð15Þ

The matrices Kmm, Kme, and Kee have elements of the forms,
respectively,

Z
HiJkL

@Na

@XJ

@Nb

@XL
dV ;$

Z

V
ekJL

@Na

@XJ

@Nb

@XL
dV ;$

Z

V
eJL
@Na

@XJ

@Nb

@XL
dV ð16Þ

The columns fm and fe have elements of the forms, respectively,

2188 H.S. Park et al. / International Journal of Solids and Structures 49 (2012) 2187–2194

1st Piola-Kirchoff Stress:

Electrical Displacement:

C = FTF 
“Right Cauchy-Green Tensor”



Governing Equation

Weak Form of PDEs:

1st Piola-Kirchoff Stress Body Force (gravity) Surface tractionAccelerationDensity

Electric Displacement Space Charge Surface Charge

compared to the quasistatic case, and then present examples of
instability and inhomogeneous deformation.

2. Nonlinear field theory of dielectric elastomers
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review of the theory of dielectric elastomers (Suo, 2010). Here
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loads. Name each material particle of the transducer by its coordi-
nate X when the transducer is in a reference state. At time t, the
material particle moves to a place of coordinate x. The function
x(X, t) describes the deformation of the transducer in time. Define
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where ni(X) is an arbitrary vector function, Bi the body force, q the
mass density, and Ti the traction. The nominal electric displacement
~DI satisfies the statement of virtual work:
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where g(X) is an arbitrary scalar test function, q the volumetric
charge density, and x the surface charge density. In (3) and (4),
the integrals are carried out over material particles—that is, over
volume and surface in the reference state of the transducer. The
mechanical equation (3) includes inertia, while the electrical equa-
tion (4) is electrostatic. Essential boundary conditions can be ap-
plied via the displacement and electric potential, while natural
boundary conditions can be applied via traction and electric
charges.

To focus on main ideas, we will not be concerned with any ther-
mal effects. The thermodynamics of the dielectric elastomer is
specified by a free-energy function Ŵ . Associated with small
changes dF and d~E, the free energy changes by

dŴ ¼ siJdFiJ $ ~DJd~EJ ð5Þ

To ensure that the free energy is invariant with respect to rigid-
body rotation, the free energy depends on the deformation gradient
through the tensor CIJ = FkIFkJ. Consequently, (5) implies that
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@ŴðC; ~EÞ

@~EJ

ð6Þ
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where Na(X) are shape functions, ua(t) is the nodal displacement
and Ua(t) is the nodal electric potential; the sum is taken over all
nodes. We adopt the same discretization for the test functions:
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Denote the column of nodal values of displacement by u, that of
velocity by v, that of acceleration by a, and that of electric potential
by U. Eq. (11) is a nonlinear ordinary differential equation, which
relates nodal values of acceleration to a nonlinear function of the
nodal values of displacement and electric potential:
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The matrix M has elements of the form
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The coupled ordinary differential equation (13) and algebraic equa-
tion (14) evolve the two columns (u(t)) and U(t).

3.1. Quasistatic formulation

In the quasistatic formulation (i.e. neglecting inertia), (11) be-
comes a nonlinear algebraic equation of the nodal values of dis-
placement and electric potential. The simultaneous nonlinear
algebraic equations (11) and (12) may be solved by using the New-
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loads. Name each material particle of the transducer by its coordi-
nate X when the transducer is in a reference state. At time t, the
material particle moves to a place of coordinate x. The function
x(X, t) describes the deformation of the transducer in time. Define
the deformation gradient by
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Let U(X, t) be the electric potential of material particle X and time t.
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where ni(X) is an arbitrary vector function, Bi the body force, q the
mass density, and Ti the traction. The nominal electric displacement
~DI satisfies the statement of virtual work:
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where g(X) is an arbitrary scalar test function, q the volumetric
charge density, and x the surface charge density. In (3) and (4),
the integrals are carried out over material particles—that is, over
volume and surface in the reference state of the transducer. The
mechanical equation (3) includes inertia, while the electrical equa-
tion (4) is electrostatic. Essential boundary conditions can be ap-
plied via the displacement and electric potential, while natural
boundary conditions can be applied via traction and electric
charges.

To focus on main ideas, we will not be concerned with any ther-
mal effects. The thermodynamics of the dielectric elastomer is
specified by a free-energy function Ŵ . Associated with small
changes dF and d~E, the free energy changes by

dŴ ¼ siJdFiJ $ ~DJd~EJ ð5Þ

To ensure that the free energy is invariant with respect to rigid-
body rotation, the free energy depends on the deformation gradient
through the tensor CIJ = FkIFkJ. Consequently, (5) implies that
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Once the function ŴðC; ~EÞ is specified for a dielectric elastomer, (6)
gives the equations of state.

At a given state ðF; ~EÞ, (6) can be linearized as

DsiJ ¼ HiJkLDFkL $ eiJLD~EL;
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the displacement field and the electric potential:
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@2ŴðC; ~EÞ
@CJM@~EL

;

eJL ¼ $
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velocity by v, that of acceleration by a, and that of electric potential
by U. Eq. (11) is a nonlinear ordinary differential equation, which
relates nodal values of acceleration to a nonlinear function of the
nodal values of displacement and electric potential:

gðu;U; tÞ ¼Ma ð13Þ

The matrix M has elements of the form
R
qNbNadV. Eq. (12) is a non-

linear algebraic equation of the nodal values of displacement and
electric potential:

hðu;U; tÞ ¼ 0 ð14Þ

The coupled ordinary differential equation (13) and algebraic equa-
tion (14) evolve the two columns (u(t)) and U(t).

3.1. Quasistatic formulation

In the quasistatic formulation (i.e. neglecting inertia), (11) be-
comes a nonlinear algebraic equation of the nodal values of dis-
placement and electric potential. The simultaneous nonlinear
algebraic equations (11) and (12) may be solved by using the New-
ton–Raphson method (Vu et al., 2007; Zhou et al., 2008). In the
incremental form, (11) and (12) becomes

Kmm Kme

KT
me Kee

! "
Du
DU

! "
¼

fm

fe

! "
ð15Þ

The matrices Kmm, Kme, and Kee have elements of the forms,
respectively,

Z
HiJkL

@Na

@XJ

@Nb

@XL
dV ;$

Z

V
ekJL

@Na

@XJ

@Nb

@XL
dV ;$

Z

V
eJL
@Na

@XJ

@Nb

@XL
dV ð16Þ

The columns fm and fe have elements of the forms, respectively,
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compared to the quasistatic case, and then present examples of
instability and inhomogeneous deformation.

2. Nonlinear field theory of dielectric elastomers

Our finite element method is formulated on the basis a nonlin-
ear electromechanical field theory (Suo et al., 2008); see a recent
review of the theory of dielectric elastomers (Suo, 2010). Here
we summarize the essential equations.We evolve in time the state
of a dielectric elastomer transducer subject to electromechanical
loads. Name each material particle of the transducer by its coordi-
nate X when the transducer is in a reference state. At time t, the
material particle moves to a place of coordinate x. The function
x(X, t) describes the deformation of the transducer in time. Define
the deformation gradient by

FiJ ¼
@xiðX; tÞ
@XJ

ð1Þ

Let U(X, t) be the electric potential of material particle X and time t.
Define the nominal electric field by

~EI ¼ $
@UðX; tÞ
@XI

ð2Þ

The nominal stress siJ satisfies the statement of virtual work:
Z

siJ
@ni

@XJ
dV ¼

Z
Bi $ q @

2xi

@t2

 !
nidV þ

Z
TinidA ð3Þ

where ni(X) is an arbitrary vector function, Bi the body force, q the
mass density, and Ti the traction. The nominal electric displacement
~DI satisfies the statement of virtual work:

$
Z

~DI
@g
@XI

dV ¼
Z

qgdV þ
Z

xgdA ð4Þ

where g(X) is an arbitrary scalar test function, q the volumetric
charge density, and x the surface charge density. In (3) and (4),
the integrals are carried out over material particles—that is, over
volume and surface in the reference state of the transducer. The
mechanical equation (3) includes inertia, while the electrical equa-
tion (4) is electrostatic. Essential boundary conditions can be ap-
plied via the displacement and electric potential, while natural
boundary conditions can be applied via traction and electric
charges.

To focus on main ideas, we will not be concerned with any ther-
mal effects. The thermodynamics of the dielectric elastomer is
specified by a free-energy function Ŵ . Associated with small
changes dF and d~E, the free energy changes by

dŴ ¼ siJdFiJ $ ~DJd~EJ ð5Þ

To ensure that the free energy is invariant with respect to rigid-
body rotation, the free energy depends on the deformation gradient
through the tensor CIJ = FkIFkJ. Consequently, (5) implies that

siJ ¼ 2FiL
@ŴðC; ~EÞ
@CJL

;

~DJ ¼ $
@ŴðC; ~EÞ

@~EJ

ð6Þ

Once the function ŴðC; ~EÞ is specified for a dielectric elastomer, (6)
gives the equations of state.

At a given state ðF; ~EÞ, (6) can be linearized as

DsiJ ¼ HiJkLDFkL $ eiJLD~EL;

D~DJ ¼ eiJLDFiL þ eJLD~EL

ð7Þ

where the tangent moduli are (Zhou et al., 2008)

HiJkL ¼ 2dik
@ŴðC; ~EÞ
@CJL

þ 4FiMFkN
@2ŴðC; ~EÞ
@CJM@CLN

;

eiJL ¼ $2FiM
@2ŴðC; ~EÞ
@CJM@~EL

;

eJL ¼ $
@2ŴðC; ~EÞ
@~EJ@~EL

ð8Þ

3. Finite-element discretization

We adopt the standard finite-element discretization for both
the displacement field and the electric potential:

xðX; tÞ $ X ¼
X

NaðXÞuaðtÞ;

UðX; tÞ ¼
X

NaðXÞUaðtÞ
ð9Þ

where Na(X) are shape functions, ua(t) is the nodal displacement
and Ua(t) is the nodal electric potential; the sum is taken over all
nodes. We adopt the same discretization for the test functions:

niðXÞ ¼
X

NaðXÞnia;

gðXÞ ¼
X

NaðXÞga

ð10Þ

This Bubnov–Galerkin approximation converts (3) and (4) into
the discretized form:
Z

siJ
@Na

@XJ
dV ¼

Z
BiNadV þ

Z
TiNadA$

X
€uib

Z
qNbNadV ð11Þ

$
Z

~DI
@Na

@XI
dV ¼

Z
qNadV þ

Z
xNadA ð12Þ

Denote the column of nodal values of displacement by u, that of
velocity by v, that of acceleration by a, and that of electric potential
by U. Eq. (11) is a nonlinear ordinary differential equation, which
relates nodal values of acceleration to a nonlinear function of the
nodal values of displacement and electric potential:

gðu;U; tÞ ¼Ma ð13Þ

The matrix M has elements of the form
R
qNbNadV. Eq. (12) is a non-

linear algebraic equation of the nodal values of displacement and
electric potential:

hðu;U; tÞ ¼ 0 ð14Þ

The coupled ordinary differential equation (13) and algebraic equa-
tion (14) evolve the two columns (u(t)) and U(t).

3.1. Quasistatic formulation

In the quasistatic formulation (i.e. neglecting inertia), (11) be-
comes a nonlinear algebraic equation of the nodal values of dis-
placement and electric potential. The simultaneous nonlinear
algebraic equations (11) and (12) may be solved by using the New-
ton–Raphson method (Vu et al., 2007; Zhou et al., 2008). In the
incremental form, (11) and (12) becomes

Kmm Kme

KT
me Kee

! "
Du
DU

! "
¼

fm

fe

! "
ð15Þ

The matrices Kmm, Kme, and Kee have elements of the forms,
respectively,

Z
HiJkL

@Na

@XJ

@Nb

@XL
dV ;$

Z

V
ekJL

@Na

@XJ

@Nb

@XL
dV ;$

Z

V
eJL
@Na

@XJ

@Nb
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dV ð16Þ

The columns fm and fe have elements of the forms, respectively,
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compared to the quasistatic case, and then present examples of
instability and inhomogeneous deformation.

2. Nonlinear field theory of dielectric elastomers

Our finite element method is formulated on the basis a nonlin-
ear electromechanical field theory (Suo et al., 2008); see a recent
review of the theory of dielectric elastomers (Suo, 2010). Here
we summarize the essential equations.We evolve in time the state
of a dielectric elastomer transducer subject to electromechanical
loads. Name each material particle of the transducer by its coordi-
nate X when the transducer is in a reference state. At time t, the
material particle moves to a place of coordinate x. The function
x(X, t) describes the deformation of the transducer in time. Define
the deformation gradient by

FiJ ¼
@xiðX; tÞ
@XJ

ð1Þ

Let U(X, t) be the electric potential of material particle X and time t.
Define the nominal electric field by

~EI ¼ $
@UðX; tÞ
@XI

ð2Þ

The nominal stress siJ satisfies the statement of virtual work:
Z

siJ
@ni

@XJ
dV ¼

Z
Bi $ q @
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@t2

 !
nidV þ

Z
TinidA ð3Þ

where ni(X) is an arbitrary vector function, Bi the body force, q the
mass density, and Ti the traction. The nominal electric displacement
~DI satisfies the statement of virtual work:

$
Z

~DI
@g
@XI

dV ¼
Z

qgdV þ
Z

xgdA ð4Þ

where g(X) is an arbitrary scalar test function, q the volumetric
charge density, and x the surface charge density. In (3) and (4),
the integrals are carried out over material particles—that is, over
volume and surface in the reference state of the transducer. The
mechanical equation (3) includes inertia, while the electrical equa-
tion (4) is electrostatic. Essential boundary conditions can be ap-
plied via the displacement and electric potential, while natural
boundary conditions can be applied via traction and electric
charges.

To focus on main ideas, we will not be concerned with any ther-
mal effects. The thermodynamics of the dielectric elastomer is
specified by a free-energy function Ŵ . Associated with small
changes dF and d~E, the free energy changes by

dŴ ¼ siJdFiJ $ ~DJd~EJ ð5Þ

To ensure that the free energy is invariant with respect to rigid-
body rotation, the free energy depends on the deformation gradient
through the tensor CIJ = FkIFkJ. Consequently, (5) implies that

siJ ¼ 2FiL
@ŴðC; ~EÞ
@CJL

;

~DJ ¼ $
@ŴðC; ~EÞ

@~EJ

ð6Þ

Once the function ŴðC; ~EÞ is specified for a dielectric elastomer, (6)
gives the equations of state.

At a given state ðF; ~EÞ, (6) can be linearized as

DsiJ ¼ HiJkLDFkL $ eiJLD~EL;

D~DJ ¼ eiJLDFiL þ eJLD~EL

ð7Þ

where the tangent moduli are (Zhou et al., 2008)

HiJkL ¼ 2dik
@ŴðC; ~EÞ
@CJL

þ 4FiMFkN
@2ŴðC; ~EÞ
@CJM@CLN

;

eiJL ¼ $2FiM
@2ŴðC; ~EÞ
@CJM@~EL

;

eJL ¼ $
@2ŴðC; ~EÞ
@~EJ@~EL

ð8Þ

3. Finite-element discretization

We adopt the standard finite-element discretization for both
the displacement field and the electric potential:

xðX; tÞ $ X ¼
X

NaðXÞuaðtÞ;

UðX; tÞ ¼
X

NaðXÞUaðtÞ
ð9Þ

where Na(X) are shape functions, ua(t) is the nodal displacement
and Ua(t) is the nodal electric potential; the sum is taken over all
nodes. We adopt the same discretization for the test functions:

niðXÞ ¼
X

NaðXÞnia;

gðXÞ ¼
X

NaðXÞga

ð10Þ

This Bubnov–Galerkin approximation converts (3) and (4) into
the discretized form:
Z

siJ
@Na

@XJ
dV ¼

Z
BiNadV þ

Z
TiNadA$

X
€uib

Z
qNbNadV ð11Þ

$
Z

~DI
@Na

@XI
dV ¼

Z
qNadV þ

Z
xNadA ð12Þ

Denote the column of nodal values of displacement by u, that of
velocity by v, that of acceleration by a, and that of electric potential
by U. Eq. (11) is a nonlinear ordinary differential equation, which
relates nodal values of acceleration to a nonlinear function of the
nodal values of displacement and electric potential:

gðu;U; tÞ ¼Ma ð13Þ

The matrix M has elements of the form
R
qNbNadV. Eq. (12) is a non-

linear algebraic equation of the nodal values of displacement and
electric potential:

hðu;U; tÞ ¼ 0 ð14Þ

The coupled ordinary differential equation (13) and algebraic equa-
tion (14) evolve the two columns (u(t)) and U(t).

3.1. Quasistatic formulation

In the quasistatic formulation (i.e. neglecting inertia), (11) be-
comes a nonlinear algebraic equation of the nodal values of dis-
placement and electric potential. The simultaneous nonlinear
algebraic equations (11) and (12) may be solved by using the New-
ton–Raphson method (Vu et al., 2007; Zhou et al., 2008). In the
incremental form, (11) and (12) becomes

Kmm Kme

KT
me Kee

! "
Du
DU

! "
¼

fm

fe

! "
ð15Þ

The matrices Kmm, Kme, and Kee have elements of the forms,
respectively,

Z
HiJkL

@Na

@XJ

@Nb

@XL
dV ;$

Z

V
ekJL
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@XJ

@Nb

@XL
dV ;$
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V
eJL
@Na
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The columns fm and fe have elements of the forms, respectively,
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2. Nonlinear field theory of dielectric elastomers

Our finite element method is formulated on the basis a nonlin-
ear electromechanical field theory (Suo et al., 2008); see a recent
review of the theory of dielectric elastomers (Suo, 2010). Here
we summarize the essential equations.We evolve in time the state
of a dielectric elastomer transducer subject to electromechanical
loads. Name each material particle of the transducer by its coordi-
nate X when the transducer is in a reference state. At time t, the
material particle moves to a place of coordinate x. The function
x(X, t) describes the deformation of the transducer in time. Define
the deformation gradient by

FiJ ¼
@xiðX; tÞ
@XJ

ð1Þ

Let U(X, t) be the electric potential of material particle X and time t.
Define the nominal electric field by

~EI ¼ $
@UðX; tÞ
@XI

ð2Þ

The nominal stress siJ satisfies the statement of virtual work:
Z

siJ
@ni

@XJ
dV ¼

Z
Bi $ q @

2xi

@t2
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nidV þ

Z
TinidA ð3Þ

where ni(X) is an arbitrary vector function, Bi the body force, q the
mass density, and Ti the traction. The nominal electric displacement
~DI satisfies the statement of virtual work:

$
Z

~DI
@g
@XI

dV ¼
Z

qgdV þ
Z

xgdA ð4Þ

where g(X) is an arbitrary scalar test function, q the volumetric
charge density, and x the surface charge density. In (3) and (4),
the integrals are carried out over material particles—that is, over
volume and surface in the reference state of the transducer. The
mechanical equation (3) includes inertia, while the electrical equa-
tion (4) is electrostatic. Essential boundary conditions can be ap-
plied via the displacement and electric potential, while natural
boundary conditions can be applied via traction and electric
charges.

To focus on main ideas, we will not be concerned with any ther-
mal effects. The thermodynamics of the dielectric elastomer is
specified by a free-energy function Ŵ . Associated with small
changes dF and d~E, the free energy changes by

dŴ ¼ siJdFiJ $ ~DJd~EJ ð5Þ

To ensure that the free energy is invariant with respect to rigid-
body rotation, the free energy depends on the deformation gradient
through the tensor CIJ = FkIFkJ. Consequently, (5) implies that

siJ ¼ 2FiL
@ŴðC; ~EÞ
@CJL

;

~DJ ¼ $
@ŴðC; ~EÞ

@~EJ

ð6Þ

Once the function ŴðC; ~EÞ is specified for a dielectric elastomer, (6)
gives the equations of state.

At a given state ðF; ~EÞ, (6) can be linearized as

DsiJ ¼ HiJkLDFkL $ eiJLD~EL;

D~DJ ¼ eiJLDFiL þ eJLD~EL

ð7Þ

where the tangent moduli are (Zhou et al., 2008)

HiJkL ¼ 2dik
@ŴðC; ~EÞ
@CJL

þ 4FiMFkN
@2ŴðC; ~EÞ
@CJM@CLN

;

eiJL ¼ $2FiM
@2ŴðC; ~EÞ
@CJM@~EL

;

eJL ¼ $
@2ŴðC; ~EÞ
@~EJ@~EL

ð8Þ

3. Finite-element discretization

We adopt the standard finite-element discretization for both
the displacement field and the electric potential:

xðX; tÞ $ X ¼
X

NaðXÞuaðtÞ;

UðX; tÞ ¼
X

NaðXÞUaðtÞ
ð9Þ

where Na(X) are shape functions, ua(t) is the nodal displacement
and Ua(t) is the nodal electric potential; the sum is taken over all
nodes. We adopt the same discretization for the test functions:

niðXÞ ¼
X

NaðXÞnia;

gðXÞ ¼
X

NaðXÞga

ð10Þ

This Bubnov–Galerkin approximation converts (3) and (4) into
the discretized form:
Z

siJ
@Na

@XJ
dV ¼

Z
BiNadV þ

Z
TiNadA$

X
€uib

Z
qNbNadV ð11Þ

$
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dV ¼
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Z
xNadA ð12Þ

Denote the column of nodal values of displacement by u, that of
velocity by v, that of acceleration by a, and that of electric potential
by U. Eq. (11) is a nonlinear ordinary differential equation, which
relates nodal values of acceleration to a nonlinear function of the
nodal values of displacement and electric potential:

gðu;U; tÞ ¼Ma ð13Þ

The matrix M has elements of the form
R
qNbNadV. Eq. (12) is a non-

linear algebraic equation of the nodal values of displacement and
electric potential:

hðu;U; tÞ ¼ 0 ð14Þ

The coupled ordinary differential equation (13) and algebraic equa-
tion (14) evolve the two columns (u(t)) and U(t).

3.1. Quasistatic formulation

In the quasistatic formulation (i.e. neglecting inertia), (11) be-
comes a nonlinear algebraic equation of the nodal values of dis-
placement and electric potential. The simultaneous nonlinear
algebraic equations (11) and (12) may be solved by using the New-
ton–Raphson method (Vu et al., 2007; Zhou et al., 2008). In the
incremental form, (11) and (12) becomes

Kmm Kme
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! "
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The matrices Kmm, Kme, and Kee have elements of the forms,
respectively,

Z
HiJkL

@Na
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@XL
dV ;$
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ekJL
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@Nb
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dV ;$
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The columns fm and fe have elements of the forms, respectively,
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compared to the quasistatic case, and then present examples of
instability and inhomogeneous deformation.

2. Nonlinear field theory of dielectric elastomers

Our finite element method is formulated on the basis a nonlin-
ear electromechanical field theory (Suo et al., 2008); see a recent
review of the theory of dielectric elastomers (Suo, 2010). Here
we summarize the essential equations.We evolve in time the state
of a dielectric elastomer transducer subject to electromechanical
loads. Name each material particle of the transducer by its coordi-
nate X when the transducer is in a reference state. At time t, the
material particle moves to a place of coordinate x. The function
x(X, t) describes the deformation of the transducer in time. Define
the deformation gradient by

FiJ ¼
@xiðX; tÞ
@XJ

ð1Þ

Let U(X, t) be the electric potential of material particle X and time t.
Define the nominal electric field by

~EI ¼ $
@UðX; tÞ
@XI

ð2Þ

The nominal stress siJ satisfies the statement of virtual work:
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Z
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where ni(X) is an arbitrary vector function, Bi the body force, q the
mass density, and Ti the traction. The nominal electric displacement
~DI satisfies the statement of virtual work:

$
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dV ¼
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qgdV þ
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xgdA ð4Þ

where g(X) is an arbitrary scalar test function, q the volumetric
charge density, and x the surface charge density. In (3) and (4),
the integrals are carried out over material particles—that is, over
volume and surface in the reference state of the transducer. The
mechanical equation (3) includes inertia, while the electrical equa-
tion (4) is electrostatic. Essential boundary conditions can be ap-
plied via the displacement and electric potential, while natural
boundary conditions can be applied via traction and electric
charges.

To focus on main ideas, we will not be concerned with any ther-
mal effects. The thermodynamics of the dielectric elastomer is
specified by a free-energy function Ŵ . Associated with small
changes dF and d~E, the free energy changes by

dŴ ¼ siJdFiJ $ ~DJd~EJ ð5Þ

To ensure that the free energy is invariant with respect to rigid-
body rotation, the free energy depends on the deformation gradient
through the tensor CIJ = FkIFkJ. Consequently, (5) implies that

siJ ¼ 2FiL
@ŴðC; ~EÞ
@CJL

;

~DJ ¼ $
@ŴðC; ~EÞ

@~EJ

ð6Þ

Once the function ŴðC; ~EÞ is specified for a dielectric elastomer, (6)
gives the equations of state.

At a given state ðF; ~EÞ, (6) can be linearized as

DsiJ ¼ HiJkLDFkL $ eiJLD~EL;

D~DJ ¼ eiJLDFiL þ eJLD~EL

ð7Þ

where the tangent moduli are (Zhou et al., 2008)
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3. Finite-element discretization

We adopt the standard finite-element discretization for both
the displacement field and the electric potential:

xðX; tÞ $ X ¼
X

NaðXÞuaðtÞ;

UðX; tÞ ¼
X

NaðXÞUaðtÞ
ð9Þ

where Na(X) are shape functions, ua(t) is the nodal displacement
and Ua(t) is the nodal electric potential; the sum is taken over all
nodes. We adopt the same discretization for the test functions:

niðXÞ ¼
X

NaðXÞnia;

gðXÞ ¼
X

NaðXÞga

ð10Þ

This Bubnov–Galerkin approximation converts (3) and (4) into
the discretized form:
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Denote the column of nodal values of displacement by u, that of
velocity by v, that of acceleration by a, and that of electric potential
by U. Eq. (11) is a nonlinear ordinary differential equation, which
relates nodal values of acceleration to a nonlinear function of the
nodal values of displacement and electric potential:

gðu;U; tÞ ¼Ma ð13Þ

The matrix M has elements of the form
R
qNbNadV. Eq. (12) is a non-

linear algebraic equation of the nodal values of displacement and
electric potential:

hðu;U; tÞ ¼ 0 ð14Þ

The coupled ordinary differential equation (13) and algebraic equa-
tion (14) evolve the two columns (u(t)) and U(t).

3.1. Quasistatic formulation

In the quasistatic formulation (i.e. neglecting inertia), (11) be-
comes a nonlinear algebraic equation of the nodal values of dis-
placement and electric potential. The simultaneous nonlinear
algebraic equations (11) and (12) may be solved by using the New-
ton–Raphson method (Vu et al., 2007; Zhou et al., 2008). In the
incremental form, (11) and (12) becomes
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The matrices Kmm, Kme, and Kee have elements of the forms,
respectively,
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The columns fm and fe have elements of the forms, respectively,
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Linearization:

0 (quasistatic) 

•  Find roots using Newton-Raphson method (i.e. solve linearized equation 
at each iteration)

•  Instability when Hessian becomes singular

compared to the quasistatic case, and then present examples of
instability and inhomogeneous deformation.

2. Nonlinear field theory of dielectric elastomers

Our finite element method is formulated on the basis a nonlin-
ear electromechanical field theory (Suo et al., 2008); see a recent
review of the theory of dielectric elastomers (Suo, 2010). Here
we summarize the essential equations.We evolve in time the state
of a dielectric elastomer transducer subject to electromechanical
loads. Name each material particle of the transducer by its coordi-
nate X when the transducer is in a reference state. At time t, the
material particle moves to a place of coordinate x. The function
x(X, t) describes the deformation of the transducer in time. Define
the deformation gradient by

FiJ ¼
@xiðX; tÞ
@XJ

ð1Þ

Let U(X, t) be the electric potential of material particle X and time t.
Define the nominal electric field by

~EI ¼ $
@UðX; tÞ
@XI

ð2Þ

The nominal stress siJ satisfies the statement of virtual work:
Z

siJ
@ni

@XJ
dV ¼

Z
Bi $ q @

2xi

@t2

 !
nidV þ

Z
TinidA ð3Þ

where ni(X) is an arbitrary vector function, Bi the body force, q the
mass density, and Ti the traction. The nominal electric displacement
~DI satisfies the statement of virtual work:

$
Z

~DI
@g
@XI

dV ¼
Z

qgdV þ
Z

xgdA ð4Þ

where g(X) is an arbitrary scalar test function, q the volumetric
charge density, and x the surface charge density. In (3) and (4),
the integrals are carried out over material particles—that is, over
volume and surface in the reference state of the transducer. The
mechanical equation (3) includes inertia, while the electrical equa-
tion (4) is electrostatic. Essential boundary conditions can be ap-
plied via the displacement and electric potential, while natural
boundary conditions can be applied via traction and electric
charges.

To focus on main ideas, we will not be concerned with any ther-
mal effects. The thermodynamics of the dielectric elastomer is
specified by a free-energy function Ŵ . Associated with small
changes dF and d~E, the free energy changes by

dŴ ¼ siJdFiJ $ ~DJd~EJ ð5Þ

To ensure that the free energy is invariant with respect to rigid-
body rotation, the free energy depends on the deformation gradient
through the tensor CIJ = FkIFkJ. Consequently, (5) implies that

siJ ¼ 2FiL
@ŴðC; ~EÞ
@CJL

;

~DJ ¼ $
@ŴðC; ~EÞ

@~EJ

ð6Þ

Once the function ŴðC; ~EÞ is specified for a dielectric elastomer, (6)
gives the equations of state.

At a given state ðF; ~EÞ, (6) can be linearized as

DsiJ ¼ HiJkLDFkL $ eiJLD~EL;

D~DJ ¼ eiJLDFiL þ eJLD~EL

ð7Þ

where the tangent moduli are (Zhou et al., 2008)

HiJkL ¼ 2dik
@ŴðC; ~EÞ
@CJL

þ 4FiMFkN
@2ŴðC; ~EÞ
@CJM@CLN

;

eiJL ¼ $2FiM
@2ŴðC; ~EÞ
@CJM@~EL

;

eJL ¼ $
@2ŴðC; ~EÞ
@~EJ@~EL

ð8Þ

3. Finite-element discretization

We adopt the standard finite-element discretization for both
the displacement field and the electric potential:

xðX; tÞ $ X ¼
X

NaðXÞuaðtÞ;

UðX; tÞ ¼
X

NaðXÞUaðtÞ
ð9Þ

where Na(X) are shape functions, ua(t) is the nodal displacement
and Ua(t) is the nodal electric potential; the sum is taken over all
nodes. We adopt the same discretization for the test functions:

niðXÞ ¼
X

NaðXÞnia;

gðXÞ ¼
X

NaðXÞga

ð10Þ

This Bubnov–Galerkin approximation converts (3) and (4) into
the discretized form:
Z

siJ
@Na

@XJ
dV ¼

Z
BiNadV þ

Z
TiNadA$

X
€uib

Z
qNbNadV ð11Þ

$
Z

~DI
@Na

@XI
dV ¼

Z
qNadV þ

Z
xNadA ð12Þ

Denote the column of nodal values of displacement by u, that of
velocity by v, that of acceleration by a, and that of electric potential
by U. Eq. (11) is a nonlinear ordinary differential equation, which
relates nodal values of acceleration to a nonlinear function of the
nodal values of displacement and electric potential:

gðu;U; tÞ ¼Ma ð13Þ

The matrix M has elements of the form
R
qNbNadV. Eq. (12) is a non-

linear algebraic equation of the nodal values of displacement and
electric potential:

hðu;U; tÞ ¼ 0 ð14Þ

The coupled ordinary differential equation (13) and algebraic equa-
tion (14) evolve the two columns (u(t)) and U(t).

3.1. Quasistatic formulation

In the quasistatic formulation (i.e. neglecting inertia), (11) be-
comes a nonlinear algebraic equation of the nodal values of dis-
placement and electric potential. The simultaneous nonlinear
algebraic equations (11) and (12) may be solved by using the New-
ton–Raphson method (Vu et al., 2007; Zhou et al., 2008). In the
incremental form, (11) and (12) becomes

Kmm Kme

KT
me Kee

! "
Du
DU

! "
¼

fm

fe

! "
ð15Þ

The matrices Kmm, Kme, and Kee have elements of the forms,
respectively,

Z
HiJkL

@Na

@XJ

@Nb

@XL
dV ;$

Z

V
ekJL

@Na

@XJ

@Nb

@XL
dV ;$

Z

V
eJL
@Na

@XJ

@Nb

@XL
dV ð16Þ

The columns fm and fe have elements of the forms, respectively,
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compared to the quasistatic case, and then present examples of
instability and inhomogeneous deformation.

2. Nonlinear field theory of dielectric elastomers

Our finite element method is formulated on the basis a nonlin-
ear electromechanical field theory (Suo et al., 2008); see a recent
review of the theory of dielectric elastomers (Suo, 2010). Here
we summarize the essential equations.We evolve in time the state
of a dielectric elastomer transducer subject to electromechanical
loads. Name each material particle of the transducer by its coordi-
nate X when the transducer is in a reference state. At time t, the
material particle moves to a place of coordinate x. The function
x(X, t) describes the deformation of the transducer in time. Define
the deformation gradient by

FiJ ¼
@xiðX; tÞ
@XJ

ð1Þ

Let U(X, t) be the electric potential of material particle X and time t.
Define the nominal electric field by

~EI ¼ $
@UðX; tÞ
@XI

ð2Þ

The nominal stress siJ satisfies the statement of virtual work:
Z

siJ
@ni

@XJ
dV ¼

Z
Bi $ q @

2xi

@t2

 !
nidV þ

Z
TinidA ð3Þ

where ni(X) is an arbitrary vector function, Bi the body force, q the
mass density, and Ti the traction. The nominal electric displacement
~DI satisfies the statement of virtual work:

$
Z

~DI
@g
@XI

dV ¼
Z

qgdV þ
Z

xgdA ð4Þ

where g(X) is an arbitrary scalar test function, q the volumetric
charge density, and x the surface charge density. In (3) and (4),
the integrals are carried out over material particles—that is, over
volume and surface in the reference state of the transducer. The
mechanical equation (3) includes inertia, while the electrical equa-
tion (4) is electrostatic. Essential boundary conditions can be ap-
plied via the displacement and electric potential, while natural
boundary conditions can be applied via traction and electric
charges.

To focus on main ideas, we will not be concerned with any ther-
mal effects. The thermodynamics of the dielectric elastomer is
specified by a free-energy function Ŵ . Associated with small
changes dF and d~E, the free energy changes by

dŴ ¼ siJdFiJ $ ~DJd~EJ ð5Þ

To ensure that the free energy is invariant with respect to rigid-
body rotation, the free energy depends on the deformation gradient
through the tensor CIJ = FkIFkJ. Consequently, (5) implies that

siJ ¼ 2FiL
@ŴðC; ~EÞ
@CJL

;

~DJ ¼ $
@ŴðC; ~EÞ

@~EJ

ð6Þ

Once the function ŴðC; ~EÞ is specified for a dielectric elastomer, (6)
gives the equations of state.

At a given state ðF; ~EÞ, (6) can be linearized as

DsiJ ¼ HiJkLDFkL $ eiJLD~EL;

D~DJ ¼ eiJLDFiL þ eJLD~EL

ð7Þ

where the tangent moduli are (Zhou et al., 2008)

HiJkL ¼ 2dik
@ŴðC; ~EÞ
@CJL

þ 4FiMFkN
@2ŴðC; ~EÞ
@CJM@CLN

;

eiJL ¼ $2FiM
@2ŴðC; ~EÞ
@CJM@~EL

;

eJL ¼ $
@2ŴðC; ~EÞ
@~EJ@~EL

ð8Þ

3. Finite-element discretization

We adopt the standard finite-element discretization for both
the displacement field and the electric potential:

xðX; tÞ $ X ¼
X

NaðXÞuaðtÞ;

UðX; tÞ ¼
X

NaðXÞUaðtÞ
ð9Þ

where Na(X) are shape functions, ua(t) is the nodal displacement
and Ua(t) is the nodal electric potential; the sum is taken over all
nodes. We adopt the same discretization for the test functions:

niðXÞ ¼
X

NaðXÞnia;

gðXÞ ¼
X

NaðXÞga

ð10Þ

This Bubnov–Galerkin approximation converts (3) and (4) into
the discretized form:
Z

siJ
@Na

@XJ
dV ¼

Z
BiNadV þ

Z
TiNadA$

X
€uib

Z
qNbNadV ð11Þ

$
Z

~DI
@Na

@XI
dV ¼

Z
qNadV þ

Z
xNadA ð12Þ

Denote the column of nodal values of displacement by u, that of
velocity by v, that of acceleration by a, and that of electric potential
by U. Eq. (11) is a nonlinear ordinary differential equation, which
relates nodal values of acceleration to a nonlinear function of the
nodal values of displacement and electric potential:

gðu;U; tÞ ¼Ma ð13Þ

The matrix M has elements of the form
R
qNbNadV. Eq. (12) is a non-

linear algebraic equation of the nodal values of displacement and
electric potential:

hðu;U; tÞ ¼ 0 ð14Þ

The coupled ordinary differential equation (13) and algebraic equa-
tion (14) evolve the two columns (u(t)) and U(t).

3.1. Quasistatic formulation

In the quasistatic formulation (i.e. neglecting inertia), (11) be-
comes a nonlinear algebraic equation of the nodal values of dis-
placement and electric potential. The simultaneous nonlinear
algebraic equations (11) and (12) may be solved by using the New-
ton–Raphson method (Vu et al., 2007; Zhou et al., 2008). In the
incremental form, (11) and (12) becomes

Kmm Kme

KT
me Kee

! "
Du
DU

! "
¼

fm

fe

! "
ð15Þ

The matrices Kmm, Kme, and Kee have elements of the forms,
respectively,

Z
HiJkL

@Na

@XJ

@Nb

@XL
dV ;$

Z

V
ekJL

@Na

@XJ

@Nb

@XL
dV ;$

Z

V
eJL
@Na

@XJ

@Nb

@XL
dV ð16Þ

The columns fm and fe have elements of the forms, respectively,
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Kmm =  

Kme =  

compared to the quasistatic case, and then present examples of
instability and inhomogeneous deformation.

2. Nonlinear field theory of dielectric elastomers

Our finite element method is formulated on the basis a nonlin-
ear electromechanical field theory (Suo et al., 2008); see a recent
review of the theory of dielectric elastomers (Suo, 2010). Here
we summarize the essential equations.We evolve in time the state
of a dielectric elastomer transducer subject to electromechanical
loads. Name each material particle of the transducer by its coordi-
nate X when the transducer is in a reference state. At time t, the
material particle moves to a place of coordinate x. The function
x(X, t) describes the deformation of the transducer in time. Define
the deformation gradient by

FiJ ¼
@xiðX; tÞ
@XJ

ð1Þ

Let U(X, t) be the electric potential of material particle X and time t.
Define the nominal electric field by

~EI ¼ $
@UðX; tÞ
@XI

ð2Þ

The nominal stress siJ satisfies the statement of virtual work:
Z

siJ
@ni

@XJ
dV ¼

Z
Bi $ q @

2xi

@t2

 !
nidV þ

Z
TinidA ð3Þ

where ni(X) is an arbitrary vector function, Bi the body force, q the
mass density, and Ti the traction. The nominal electric displacement
~DI satisfies the statement of virtual work:

$
Z

~DI
@g
@XI

dV ¼
Z

qgdV þ
Z

xgdA ð4Þ

where g(X) is an arbitrary scalar test function, q the volumetric
charge density, and x the surface charge density. In (3) and (4),
the integrals are carried out over material particles—that is, over
volume and surface in the reference state of the transducer. The
mechanical equation (3) includes inertia, while the electrical equa-
tion (4) is electrostatic. Essential boundary conditions can be ap-
plied via the displacement and electric potential, while natural
boundary conditions can be applied via traction and electric
charges.

To focus on main ideas, we will not be concerned with any ther-
mal effects. The thermodynamics of the dielectric elastomer is
specified by a free-energy function Ŵ . Associated with small
changes dF and d~E, the free energy changes by

dŴ ¼ siJdFiJ $ ~DJd~EJ ð5Þ

To ensure that the free energy is invariant with respect to rigid-
body rotation, the free energy depends on the deformation gradient
through the tensor CIJ = FkIFkJ. Consequently, (5) implies that

siJ ¼ 2FiL
@ŴðC; ~EÞ
@CJL

;

~DJ ¼ $
@ŴðC; ~EÞ

@~EJ

ð6Þ

Once the function ŴðC; ~EÞ is specified for a dielectric elastomer, (6)
gives the equations of state.

At a given state ðF; ~EÞ, (6) can be linearized as

DsiJ ¼ HiJkLDFkL $ eiJLD~EL;

D~DJ ¼ eiJLDFiL þ eJLD~EL

ð7Þ

where the tangent moduli are (Zhou et al., 2008)

HiJkL ¼ 2dik
@ŴðC; ~EÞ
@CJL

þ 4FiMFkN
@2ŴðC; ~EÞ
@CJM@CLN

;

eiJL ¼ $2FiM
@2ŴðC; ~EÞ
@CJM@~EL

;

eJL ¼ $
@2ŴðC; ~EÞ
@~EJ@~EL

ð8Þ

3. Finite-element discretization

We adopt the standard finite-element discretization for both
the displacement field and the electric potential:

xðX; tÞ $ X ¼
X

NaðXÞuaðtÞ;

UðX; tÞ ¼
X

NaðXÞUaðtÞ
ð9Þ

where Na(X) are shape functions, ua(t) is the nodal displacement
and Ua(t) is the nodal electric potential; the sum is taken over all
nodes. We adopt the same discretization for the test functions:

niðXÞ ¼
X

NaðXÞnia;

gðXÞ ¼
X

NaðXÞga

ð10Þ

This Bubnov–Galerkin approximation converts (3) and (4) into
the discretized form:
Z

siJ
@Na

@XJ
dV ¼

Z
BiNadV þ

Z
TiNadA$

X
€uib

Z
qNbNadV ð11Þ

$
Z

~DI
@Na

@XI
dV ¼

Z
qNadV þ

Z
xNadA ð12Þ

Denote the column of nodal values of displacement by u, that of
velocity by v, that of acceleration by a, and that of electric potential
by U. Eq. (11) is a nonlinear ordinary differential equation, which
relates nodal values of acceleration to a nonlinear function of the
nodal values of displacement and electric potential:

gðu;U; tÞ ¼Ma ð13Þ

The matrix M has elements of the form
R
qNbNadV. Eq. (12) is a non-

linear algebraic equation of the nodal values of displacement and
electric potential:

hðu;U; tÞ ¼ 0 ð14Þ

The coupled ordinary differential equation (13) and algebraic equa-
tion (14) evolve the two columns (u(t)) and U(t).

3.1. Quasistatic formulation

In the quasistatic formulation (i.e. neglecting inertia), (11) be-
comes a nonlinear algebraic equation of the nodal values of dis-
placement and electric potential. The simultaneous nonlinear
algebraic equations (11) and (12) may be solved by using the New-
ton–Raphson method (Vu et al., 2007; Zhou et al., 2008). In the
incremental form, (11) and (12) becomes

Kmm Kme

KT
me Kee

! "
Du
DU

! "
¼

fm

fe

! "
ð15Þ

The matrices Kmm, Kme, and Kee have elements of the forms,
respectively,

Z
HiJkL

@Na

@XJ

@Nb

@XL
dV ;$

Z

V
ekJL

@Na

@XJ

@Nb

@XL
dV ;$

Z

V
eJL
@Na

@XJ

@Nb

@XL
dV ð16Þ

The columns fm and fe have elements of the forms, respectively,
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Kee =  

compared to the quasistatic case, and then present examples of
instability and inhomogeneous deformation.

2. Nonlinear field theory of dielectric elastomers

Our finite element method is formulated on the basis a nonlin-
ear electromechanical field theory (Suo et al., 2008); see a recent
review of the theory of dielectric elastomers (Suo, 2010). Here
we summarize the essential equations.We evolve in time the state
of a dielectric elastomer transducer subject to electromechanical
loads. Name each material particle of the transducer by its coordi-
nate X when the transducer is in a reference state. At time t, the
material particle moves to a place of coordinate x. The function
x(X, t) describes the deformation of the transducer in time. Define
the deformation gradient by

FiJ ¼
@xiðX; tÞ
@XJ

ð1Þ

Let U(X, t) be the electric potential of material particle X and time t.
Define the nominal electric field by

~EI ¼ $
@UðX; tÞ
@XI

ð2Þ

The nominal stress siJ satisfies the statement of virtual work:
Z

siJ
@ni

@XJ
dV ¼

Z
Bi $ q @

2xi

@t2

 !
nidV þ

Z
TinidA ð3Þ

where ni(X) is an arbitrary vector function, Bi the body force, q the
mass density, and Ti the traction. The nominal electric displacement
~DI satisfies the statement of virtual work:

$
Z

~DI
@g
@XI

dV ¼
Z

qgdV þ
Z

xgdA ð4Þ

where g(X) is an arbitrary scalar test function, q the volumetric
charge density, and x the surface charge density. In (3) and (4),
the integrals are carried out over material particles—that is, over
volume and surface in the reference state of the transducer. The
mechanical equation (3) includes inertia, while the electrical equa-
tion (4) is electrostatic. Essential boundary conditions can be ap-
plied via the displacement and electric potential, while natural
boundary conditions can be applied via traction and electric
charges.

To focus on main ideas, we will not be concerned with any ther-
mal effects. The thermodynamics of the dielectric elastomer is
specified by a free-energy function Ŵ . Associated with small
changes dF and d~E, the free energy changes by

dŴ ¼ siJdFiJ $ ~DJd~EJ ð5Þ

To ensure that the free energy is invariant with respect to rigid-
body rotation, the free energy depends on the deformation gradient
through the tensor CIJ = FkIFkJ. Consequently, (5) implies that

siJ ¼ 2FiL
@ŴðC; ~EÞ
@CJL

;

~DJ ¼ $
@ŴðC; ~EÞ

@~EJ

ð6Þ

Once the function ŴðC; ~EÞ is specified for a dielectric elastomer, (6)
gives the equations of state.

At a given state ðF; ~EÞ, (6) can be linearized as

DsiJ ¼ HiJkLDFkL $ eiJLD~EL;

D~DJ ¼ eiJLDFiL þ eJLD~EL

ð7Þ

where the tangent moduli are (Zhou et al., 2008)

HiJkL ¼ 2dik
@ŴðC; ~EÞ
@CJL

þ 4FiMFkN
@2ŴðC; ~EÞ
@CJM@CLN

;

eiJL ¼ $2FiM
@2ŴðC; ~EÞ
@CJM@~EL

;

eJL ¼ $
@2ŴðC; ~EÞ
@~EJ@~EL

ð8Þ

3. Finite-element discretization

We adopt the standard finite-element discretization for both
the displacement field and the electric potential:

xðX; tÞ $ X ¼
X

NaðXÞuaðtÞ;

UðX; tÞ ¼
X

NaðXÞUaðtÞ
ð9Þ

where Na(X) are shape functions, ua(t) is the nodal displacement
and Ua(t) is the nodal electric potential; the sum is taken over all
nodes. We adopt the same discretization for the test functions:

niðXÞ ¼
X

NaðXÞnia;

gðXÞ ¼
X

NaðXÞga

ð10Þ

This Bubnov–Galerkin approximation converts (3) and (4) into
the discretized form:
Z

siJ
@Na

@XJ
dV ¼

Z
BiNadV þ

Z
TiNadA$

X
€uib

Z
qNbNadV ð11Þ

$
Z

~DI
@Na

@XI
dV ¼

Z
qNadV þ

Z
xNadA ð12Þ

Denote the column of nodal values of displacement by u, that of
velocity by v, that of acceleration by a, and that of electric potential
by U. Eq. (11) is a nonlinear ordinary differential equation, which
relates nodal values of acceleration to a nonlinear function of the
nodal values of displacement and electric potential:

gðu;U; tÞ ¼Ma ð13Þ

The matrix M has elements of the form
R
qNbNadV. Eq. (12) is a non-

linear algebraic equation of the nodal values of displacement and
electric potential:

hðu;U; tÞ ¼ 0 ð14Þ

The coupled ordinary differential equation (13) and algebraic equa-
tion (14) evolve the two columns (u(t)) and U(t).

3.1. Quasistatic formulation

In the quasistatic formulation (i.e. neglecting inertia), (11) be-
comes a nonlinear algebraic equation of the nodal values of dis-
placement and electric potential. The simultaneous nonlinear
algebraic equations (11) and (12) may be solved by using the New-
ton–Raphson method (Vu et al., 2007; Zhou et al., 2008). In the
incremental form, (11) and (12) becomes

Kmm Kme

KT
me Kee

! "
Du
DU

! "
¼

fm

fe

! "
ð15Þ

The matrices Kmm, Kme, and Kee have elements of the forms,
respectively,

Z
HiJkL

@Na

@XJ

@Nb

@XL
dV ;$

Z

V
ekJL

@Na

@XJ

@Nb

@XL
dV ;$

Z

V
eJL
@Na

@XJ

@Nb

@XL
dV ð16Þ

The columns fm and fe have elements of the forms, respectively,
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Z

V
BiNadV þ

Z

A
TiNadA"

Z

V
siJ
@Na

@XJ
dV ;

Z

V
qNadV þ

Z

A
xNadAþ

Z

V

~DJ
@Na

@XJ
dV

ð17Þ

The Newton–Raphson method breaks down when the Hessian in
(15) is singular. The singular Hessian also corresponds to the condi-
tion of electromechanical instability (Zhao and Suo, 2007).

3.2. Dynamic formulation

If inertial effects are considered, the governing equations are
different in structure from those of Vu et al. (2007) and Zhou
et al. (2008), who did not consider inertial effects. We use inertia
to capture physical details that may arise during the electrome-
chanical softening and instability of the dielectric elastomer. Fur-
thermore, the simple nature of including inertial effects to
capture the electromechanical instability stands in contrast to
the complex arc-length (Belytschko et al., 2002) or continuation-
type methods that can also be utilized to capture the post-instabil-
ity response for materials.

Let tn and tn+1 be two consecutive discrete times, and let
Dt = tn+1 " tn be the time step. Write un = u(tn) and un+1 = u(tn+1),
etc. We use the Newmark implicit dynamic integrator (Belytschko
et al., 2002; Hughes, 1987):

unþ1 ¼ un þ Dtvn þ Dt2 1
2
" b

! "
an þ bDt2anþ1;

vnþ1 ¼ vn þ Dtð1" cÞan þ cDtanþ1
ð18Þ

The integrator is unconditionally stable if the parameters are set to
b = 1/4 and c = 1/2.

At time tn+1, the coupled ordinary differential equation (13) and
algebraic equation (14) become

gðunþ1;Unþ1; tnþ1Þ ¼ M
bDt2 unþ1 " un " Dtvn " Dt2 1

2
" b

! "
an

# $

ð19Þ

hðunþ1;Unþ1; tnþ1Þ ¼ 0 ð20Þ

In deriving (19), we have combined (13) and (18). Eqs. (19) and (20)
are coupled nonlinear algebraic equations for (un+1,Un+1). We solve
for (un+1,Un+1) by using the Newton–Raphson method. The iterative
equation takes the form

Kmm þ 1
bDt2 M Kme

KT
me Kee

" #
Dunþ1

DUnþ1

# $

¼ fm þ M
bDt2 un þ Dtvn þ Dt2ð12" bÞan " unþ1

% &

fe

# $
ð21Þ

This is a nonlinear algebraic equation for (Dun+1,DUn+1). The equa-
tion is solved repeatedly to improve the root of (un+1,Un+1). At each
iteration, the current values of (un+1,Un+1) are used to evaluate the
Hessian and the right-hand side. Observe that the matrix M is posi-
tive-definite. When the time step Dt is sufficiently small, the Hes-
sian will remain nonsingular.

4. Model of ideal dielectric elastomers

An elastomer is a three-dimensional network of long and flexi-
ble polymers, held together by crosslinks. Each polymer chain con-
sists of a large number of monomers. Consequently, the crosslinks
have negligible effect on the polarization of the monomers—that is,
the elastomer can polarize nearly as freely as a polymer melt. As an
idealization, we may assume that the dielectric behavior of an elas-
tomer is exactly the same as that of a polymer melt. This model of

ideal dielectric elastomers has the free energy of the form (Zhao
et al., 2007)

ŴðC; ~EÞ ¼WstretchðCÞ "
e
2

JC"1
IJ

~EI
~EJ ð22Þ

where Wstretch(C) is the free energy of the elastomer in the absence
of electric field, e is the permittivity of the material, J = det F is the
determinant of the deformation gradient.

In an elastomer, each individual polymer chain has a finite con-
tour length. When the elastomer is subject no loads, the polymer
chains are coiled, allowing a large number of conformations. Sub-
ject to loads, the polymer chains become less coiled. As the loads
increase, the end-to-end distance of each polymer chain ap-
proaches the finite contour length, and the elastomer approaches
a limiting stretch. On approaching the limiting stretch, the elasto-
mer stiffens steeply. This effect is absent in the neo-Hookean mod-
el, but is represented by Arruda and Boyce (1993) model:

Fig. 1. Deformation of a dielectric elastomer subject to applied charge loading for
N = 2.8 as obtained using static and dynamic FEM formulations.

Fig. 2. Deformation of a dielectric elastomer subject to applied charge loading for
N = 6 as obtained using static and dynamic FEM formulations.
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The Newton–Raphson method breaks down when the Hessian in
(15) is singular. The singular Hessian also corresponds to the condi-
tion of electromechanical instability (Zhao and Suo, 2007).

3.2. Dynamic formulation

If inertial effects are considered, the governing equations are
different in structure from those of Vu et al. (2007) and Zhou
et al. (2008), who did not consider inertial effects. We use inertia
to capture physical details that may arise during the electrome-
chanical softening and instability of the dielectric elastomer. Fur-
thermore, the simple nature of including inertial effects to
capture the electromechanical instability stands in contrast to
the complex arc-length (Belytschko et al., 2002) or continuation-
type methods that can also be utilized to capture the post-instabil-
ity response for materials.

Let tn and tn+1 be two consecutive discrete times, and let
Dt = tn+1 " tn be the time step. Write un = u(tn) and un+1 = u(tn+1),
etc. We use the Newmark implicit dynamic integrator (Belytschko
et al., 2002; Hughes, 1987):

unþ1 ¼ un þ Dtvn þ Dt2 1
2
" b

! "
an þ bDt2anþ1;

vnþ1 ¼ vn þ Dtð1" cÞan þ cDtanþ1
ð18Þ

The integrator is unconditionally stable if the parameters are set to
b = 1/4 and c = 1/2.

At time tn+1, the coupled ordinary differential equation (13) and
algebraic equation (14) become

gðunþ1;Unþ1; tnþ1Þ ¼ M
bDt2 unþ1 " un " Dtvn " Dt2 1

2
" b

! "
an

# $

ð19Þ

hðunþ1;Unþ1; tnþ1Þ ¼ 0 ð20Þ

In deriving (19), we have combined (13) and (18). Eqs. (19) and (20)
are coupled nonlinear algebraic equations for (un+1,Un+1). We solve
for (un+1,Un+1) by using the Newton–Raphson method. The iterative
equation takes the form

Kmm þ 1
bDt2 M Kme

KT
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" #
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DUnþ1

# $

¼ fm þ M
bDt2 un þ Dtvn þ Dt2ð12" bÞan " unþ1

% &

fe

# $
ð21Þ

This is a nonlinear algebraic equation for (Dun+1,DUn+1). The equa-
tion is solved repeatedly to improve the root of (un+1,Un+1). At each
iteration, the current values of (un+1,Un+1) are used to evaluate the
Hessian and the right-hand side. Observe that the matrix M is posi-
tive-definite. When the time step Dt is sufficiently small, the Hes-
sian will remain nonsingular.

4. Model of ideal dielectric elastomers

An elastomer is a three-dimensional network of long and flexi-
ble polymers, held together by crosslinks. Each polymer chain con-
sists of a large number of monomers. Consequently, the crosslinks
have negligible effect on the polarization of the monomers—that is,
the elastomer can polarize nearly as freely as a polymer melt. As an
idealization, we may assume that the dielectric behavior of an elas-
tomer is exactly the same as that of a polymer melt. This model of

ideal dielectric elastomers has the free energy of the form (Zhao
et al., 2007)

ŴðC; ~EÞ ¼WstretchðCÞ "
e
2

JC"1
IJ

~EI
~EJ ð22Þ

where Wstretch(C) is the free energy of the elastomer in the absence
of electric field, e is the permittivity of the material, J = det F is the
determinant of the deformation gradient.

In an elastomer, each individual polymer chain has a finite con-
tour length. When the elastomer is subject no loads, the polymer
chains are coiled, allowing a large number of conformations. Sub-
ject to loads, the polymer chains become less coiled. As the loads
increase, the end-to-end distance of each polymer chain ap-
proaches the finite contour length, and the elastomer approaches
a limiting stretch. On approaching the limiting stretch, the elasto-
mer stiffens steeply. This effect is absent in the neo-Hookean mod-
el, but is represented by Arruda and Boyce (1993) model:

Fig. 1. Deformation of a dielectric elastomer subject to applied charge loading for
N = 2.8 as obtained using static and dynamic FEM formulations.

Fig. 2. Deformation of a dielectric elastomer subject to applied charge loading for
N = 6 as obtained using static and dynamic FEM formulations.
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5. Numerical results

We embed the above model into the Sandia-developed simula-
tion code Tahoe (2011) using regular meshes of 8-node hexahedral
elements. The values for the material constants in the free energy

in (26) were l = e = 1 and k = 1,000,000. In all cases where an ap-
plied potential boundary condition was applied, it is assumed that
the electrodes are sufficiently compliant such that they do not con-
strain the deformation of the dielectric elastomer film. Further-
more, the initial conditions for the mechanical domain were
always set to zero, i.e. the initial displacements and velocities of
all nodes were set to zero for all examples considered below.

5.1. Homogeneous deformation: static vs. dynamic comparison

Our first example is the homogeneous deformation of a dielec-
tric elastomer sandwiched between two compliant electrodes. The
stability of the homogeneous deformation has been analyzed ana-
lytically in Keplinger et al. (2012). The electrostatic boundary con-
ditions were specified such that the voltage was zero at one
electrode (on the $y surface), while the charge at the other elec-
trode (the +y surface) was increased monotonically. The dimen-
sions of the dielectric elastomer were l = w = h = 1, which was
discretized by a single 8-node hexahedral finite element. The pur-
pose of this example is to demonstrate the ability to capture the
electromechanical instability through the inclusion of inertial
effects.

The results as shown in Figs. 1–3 are similar to those obtained
by Zhou et al. (2008) in that as N is increased, the quasistatic cal-
culation fails before the electromechanical instability occurs due
to non-convergence of the solution; we note that the onset of the
electromechanical instability corresponds to a softening in the
voltage-charge curve in Figs. 1–3.

However, if the dynamic formulation is utilized, the large defor-
mation behavior and electromechanical instability is captured for
various values of N. In particular, it can be seen that for Figs. 1–3,
the dynamic formulation captures not only the initial softening
of the voltage vs. charge curve, but then the subsequent stiffening
that occurs at large values of applied charge. Because the dynamic
problem is time-dependent, the values shown in Figs. 1–3 corre-
spond to the converged values of potential and charge that result

Fig. 5. Voltage vs. charge curve corresponding to the deformation of the free-
standing 3D dielectric elastomer thin film subject to charge loading shown in Fig. 4.

Fig. 6. Time history of deformation leading to pull-in instability and failure of a free-standing 3D dielectric elastomer under potential loading. (a) Undeformed configuration,
(b–d) various stages of deformation leading to failure of the dielectric elastomer film.
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The Newton–Raphson method breaks down when the Hessian in
(15) is singular. The singular Hessian also corresponds to the condi-
tion of electromechanical instability (Zhao and Suo, 2007).

3.2. Dynamic formulation

If inertial effects are considered, the governing equations are
different in structure from those of Vu et al. (2007) and Zhou
et al. (2008), who did not consider inertial effects. We use inertia
to capture physical details that may arise during the electrome-
chanical softening and instability of the dielectric elastomer. Fur-
thermore, the simple nature of including inertial effects to
capture the electromechanical instability stands in contrast to
the complex arc-length (Belytschko et al., 2002) or continuation-
type methods that can also be utilized to capture the post-instabil-
ity response for materials.

Let tn and tn+1 be two consecutive discrete times, and let
Dt = tn+1 " tn be the time step. Write un = u(tn) and un+1 = u(tn+1),
etc. We use the Newmark implicit dynamic integrator (Belytschko
et al., 2002; Hughes, 1987):

unþ1 ¼ un þ Dtvn þ Dt2 1
2
" b

! "
an þ bDt2anþ1;

vnþ1 ¼ vn þ Dtð1" cÞan þ cDtanþ1
ð18Þ

The integrator is unconditionally stable if the parameters are set to
b = 1/4 and c = 1/2.

At time tn+1, the coupled ordinary differential equation (13) and
algebraic equation (14) become

gðunþ1;Unþ1; tnþ1Þ ¼ M
bDt2 unþ1 " un " Dtvn " Dt2 1

2
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! "
an

# $

ð19Þ

hðunþ1;Unþ1; tnþ1Þ ¼ 0 ð20Þ

In deriving (19), we have combined (13) and (18). Eqs. (19) and (20)
are coupled nonlinear algebraic equations for (un+1,Un+1). We solve
for (un+1,Un+1) by using the Newton–Raphson method. The iterative
equation takes the form

Kmm þ 1
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This is a nonlinear algebraic equation for (Dun+1,DUn+1). The equa-
tion is solved repeatedly to improve the root of (un+1,Un+1). At each
iteration, the current values of (un+1,Un+1) are used to evaluate the
Hessian and the right-hand side. Observe that the matrix M is posi-
tive-definite. When the time step Dt is sufficiently small, the Hes-
sian will remain nonsingular.

4. Model of ideal dielectric elastomers

An elastomer is a three-dimensional network of long and flexi-
ble polymers, held together by crosslinks. Each polymer chain con-
sists of a large number of monomers. Consequently, the crosslinks
have negligible effect on the polarization of the monomers—that is,
the elastomer can polarize nearly as freely as a polymer melt. As an
idealization, we may assume that the dielectric behavior of an elas-
tomer is exactly the same as that of a polymer melt. This model of

ideal dielectric elastomers has the free energy of the form (Zhao
et al., 2007)

ŴðC; ~EÞ ¼WstretchðCÞ "
e
2

JC"1
IJ

~EI
~EJ ð22Þ

where Wstretch(C) is the free energy of the elastomer in the absence
of electric field, e is the permittivity of the material, J = det F is the
determinant of the deformation gradient.

In an elastomer, each individual polymer chain has a finite con-
tour length. When the elastomer is subject no loads, the polymer
chains are coiled, allowing a large number of conformations. Sub-
ject to loads, the polymer chains become less coiled. As the loads
increase, the end-to-end distance of each polymer chain ap-
proaches the finite contour length, and the elastomer approaches
a limiting stretch. On approaching the limiting stretch, the elasto-
mer stiffens steeply. This effect is absent in the neo-Hookean mod-
el, but is represented by Arruda and Boyce (1993) model:

Fig. 1. Deformation of a dielectric elastomer subject to applied charge loading for
N = 2.8 as obtained using static and dynamic FEM formulations.

Fig. 2. Deformation of a dielectric elastomer subject to applied charge loading for
N = 6 as obtained using static and dynamic FEM formulations.
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at each time step. We also plot in Fig. 1–3 the corresponding
analytic solution obtained for this problem (Zhao et al., 2007). It
is clear that for all values of N, the dynamic FEM formulation cap-
tures the homogeneous deformation and electromechanical insta-
bility very accurately as compared to the analytic solution.

5.2. Inhomogeneous deformation: freestanding 3D film

We now present three-dimensional examples to demonstrate
the capability of the proposed dynamic formulation in capturing
electromechanical instabilities in 3D dielectric elastomers. Our
first example is that of a free standing film, with dimensions
15 ! 3 ! 15 in the x, y and z-directions, respectively. 675 8-node
hexahedral finite elements with a regular edge length of 1 were
utilized to discretize the film. There were no mechanical con-
straints on the film, while two different electrostatic boundary
conditions were used. For the first, the "y surface of the film was
kept zero electric potential, while the +y surface of the film was
subject to a monotonically increasing value of applied charge. For
the second, the "y surface was also kept zero potential, while
the +y surface of the film was subject to a monotonically increasing

value of potential. The condition of using a potential difference to
induce the deformation of the dielectric elastomer is the standard
approach that has been utilized experimentally over the past dec-
ade; however, Keplinger et al. (2008) recently demonstrated a new
experimental technique by which charge, and not potential loading
could be used to deform the dielectric elastomer.

Fig. 4 shows the time history of deformation of the elastomer
under charge loading. As can be seen going from Fig. 4(a) to (b),
the initially undeformed film in Fig. 4(a) undergoes significant con-
traction in the thickness (y)-direction and expansion in the lateral
(x and z)-directions, where the inhomogeneous deformation that
occurs due to the softening in the voltage vs. charge curve in
Fig. 5 is illustrated in Figs. 4(b)–(d). Specifically, after the peak of
the voltage vs. charge curve is passed as shown in Fig. 5, the film
begins flexing in different modes, first about the z-axis in
Fig. 4(c), and then about both the xy and xz-axes in Fig. 4(d). The
dynamic formulation enables the resolution of the time-dependent
instability modes as shown in Fig. 4 that may be obscured by ana-
lyzing the voltage vs. charge curve alone, as it can be observed that
those curves are similar for the film in Fig. 5, and for the single ele-
ment curve undergoing homogeneous deformation in Fig. 2.

Fig. 7. 3D dielectric elastomer strip. (a) Undeformed strip; (b) illustration of wrinkling instability.
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The deformation of the elastomer under potential loading is
shown in Fig. 6; it is clear that the deformation history is signifi-
cantly different than that under charge loading in Fig. 4. In partic-
ular, under potential loading, the elastomer undergoes the well-
known pull-in instability when the maximum in the voltage-
charge curve is reached whereby the elastomer expands rapidly
in the planar directions, as shown in Figs. 6(b) and (c), while under-
going a corresponding reduction in film thickness. Specifically, the
increase in film area in going from Fig. 6(a) to (c) is about 527%,
while the corresponding reduction in film thickness is nearly
94%. Due to this enormous increase in film area and thus biaxial
tensile strain shown in Fig. 6(c), the film is unstable under further
potential loading, and a snap-back wrinkling instability is then ob-
served, in Fig. 6(d), after which failure of the dielectric elastomer
film occurs. This simulation makes clear that charge loading offers
more flexibility in terms of enabling the elastomer to explore a sig-
nificantly larger configurational space of deformations and thus
possible actuation motions after the electromechanical instability
has occurred.

5.3. Inhomogeneous deformation: wrinkling of a quasi-3D strip

Our final numerical example demonstrates the ability to cap-
ture localized electromechanical instabilities, such as wrinkling
(Plante and Dubowsky, 2006). For this example, we considered a
quasi-3D strip of dielectric elastomer with dimensions
120 ! 4 ! 1; this geometry is similar to the ‘‘cuboid’’ geometry
studied by Kofod (2008), and also the case of an elastomer attached
to a rigid substrate, i.e. Wang et al. (2011). The strip was discret-
ized with 480 8-node hexahedral finite elements with a regular
element spacing of 1. The axial length of the strip was kept fixed
in the x-direction, while the bottom ("y) surface of the strip was
fixed from moving in the y-direction. Finally, the strip was not al-
lowed to deform in the z-direction. An electrode corresponding to
zero applied voltage was applied to the bottom ("y) surface of the
strip while the electrostatic loading was applied through an ap-
plied voltage on the top (+y) surface of the strip.

Fig. 7(a) shows the undeformed configuration, while Fig. 7(b)
shows the wrinkled configuration of the elastomeric strip. The
deformation history prior to wrinkling is interesting due to the fact
that the wrinkling in Fig. 7(b) occurs almost immediately after a
very small amount of compressive strain in the strip, on the order

of <0.01%, is achieved. This suggests that a snap-through like path
to the wrinkling instability is followed, where this hypothesis can
be verified by analyzing the voltage vs. charge curve for the 3D
elastomeric strip in Fig. 8. There, the wrinkling instability is detect-
able via the reduction in the slope of the voltage-charge curve, and
thus a reduction in the film capacitance, at a normalized voltage of
about 12. After formation of the wrinkles, the wrinkles are ob-
served to propagate along the surface of the strip under further
electrostatic loading. The remainder of the voltage-charge curve
corresponds to the time history of the wrinkling instability, with
eventual failure of the 3D strip at a normalized voltage near 16.

We also considered a quasi-3D strip with both active and pas-
sive regions, to conduct simulations similar in spirit to recent
experimental studies (Pelrine et al., 2000; Plante and Dubowsky,
2006) in which the voltage was applied to only the (active) central
region of the 3D strip, which was one half the total length of the
strip, while two outer (passive) regions of the strip, each of which
was one quarter the total length of the strip, were not subject to
any applied electrostatic loading. This type of decomposition is
typically performed experimentally to access the true material re-
sponse of the dielectric elastomer by limiting the effects of stress
concentrations that occur at the fixed ends of the dielectric elasto-
mer. There were no kinematic constraints between the active and
passive regions except the usual displacement continuity that is
mandated and automatically enforced by the finite element
approximation. Even for this case, we found that while the buck-
ling instability initiated in the active region, it soon propagated
to the passive region, thereby causing instability and buckling of
the entire strip, similar to what is demonstrated in Fig. 7(b).

6. Conclusions

In conclusion, we have presented a nonlinear finite element for-
mulation for the analysis of dielectric elastomers. We have demon-
strated that by accounting for inertial effects in the governing
mechanical equation of motion, inhomogeneous deformation
modes, such as the pull-in instability and wrinkling, that result
from electromechanical instabilities and that are the key factors
in limiting the performance and reliability of dielectric elastomer
transducers, can be captured and analyzed. Having demonstrated
the robustness of the proposed finite element formulation, it is
clear that it is suitable for future implementation in commercial fi-
nite element codes like ABAQUS or COMSOL to study electrome-
chanical instabilities in dielectric elastomer transducers.
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CAD MODELING – ISSUES
No algebraic solution
•  Scaling laws and design rules?
•  How will changing a material property or geometric dimension alter 

performance?

Takes too long
•  Computationally intensive
•  Requires hours to run a simulation
•  Simulation must be repeated for even minor design changes
•  Solution doesn’t always converge

Difficult to validate
•  No method to independenty validate solution
•  Dependent on accuracy of assumptions/input
•  “Garbage in, garbage out”



PROPOSED ALTERNATIVE
Discretize!
•  Treat each limb as an individual element

Use “Reduce Dimensional” Models
•  Euler-Bernoulli Beam Theory
•  Kirchoff Plate Theory
•  Coulomb’s Friction Law
•  Hertzian Contact Theory

Ensure Compatibility
•  Attached elements must be kinematically compatible
•  Transfer of equal-and-opposite loads

Use ODE solvers in MATLAB
•  Runga-Kutta (ode45)
•  Finite difference (bvp4c)
•  Avoid PDEs whenever possible!



EULER-BERNOULLI BEAM THEORY

θ(x) 

x 

v(x) 

ρ

θ 

θ + κ dx 

v = deflection

θ =
dv
dx

= slope

κ =
dθ
dx

=
1
ρ
= curvature

ρ = radius of curvature
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Deflection are determined by calculating 
the internal bending moment M = M(x).
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ELASTICA
For large deflections, use Elastica theory 

In both Elastica and Linear Beam Theory, M = Dκ, where 
 

 M = M(ξ)   and  κ = dθ/ds  
 
The difference between the two theories is how we calculate M 
and θ. 
 
Linear Beam Theory      Elastica 
dv/ds = θ         dv/ds = sin(θ)    
M calculated in Lagrangian    M calculated in Eulerian 
Description (Ref. Placement)   Description (Current) 

ds	
dv	θ	



M =V L− s( )

Linear Beam Theory 

dθ
ds
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V
D
L− s( )
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ds	
θ	 V 
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M+M,sds 

Elastica 

dM
ds

= −Vcos θ( )

d2θ
ds2

= −
V
D
cos θ( )

Converge for small deflection:  cos(θ) ≈ 1 
dM/ds ≈ –V ⇒	M = C1 – Vs 
M(L) = 0  ⇒	C1 = Ls  
⇒	dθ/ds =  –(V/D)(L – s) 



In general, 
 

   (non-linear 2nd-order ODE) 
 
Must solve for θ(0) = 0 and θ’(L) = ML 
 
For pure shear, is determined by solving the following 
boundary-value problem (BVP):  

d2θ
ds2

= k1sin θ( )+ k2 cos θ( )
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V
D
cos θ( ) θ 0( ) = 0 ʹθ L( ) = 0
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We typically solve nonlinear BVPs in Matlab using bvp4c: 

function elastica 
  
global D V R0 
  
n = 100; 
L = 1; 
D = 1; 
V = 2; 
  
s = linspace(0,L,n); 
ds = L/(n-1);     
  
solinit = bvpinit(s,@axial_init); 
sol = bvp4c(@axial_ode,@axial_bc,solinit); 
  
S = deval(sol,s); 
theta = S(1,:); 
kappa = S(2,:); 
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d2θ
ds2

= −
V
D
cos θ( ) θ 0( ) = 0 ʹθ L( ) = 0

Matlab solves 1st order ODEs (scalars or vectors).  Convert: 

z1 0( ) = 0 z2 L( ) = 0



solinit = bvpinit(s,@axial_init); 
sol = bvp4c(@axial_ode,@axial_bc,solinit); 
… 

% ------------------------------------ 
function dzdr = axial_ode(s,z) 
  
global D V 
dzdr = [  z(2); -(V/D)*cos(z(1))]; 
  
% ------------------------------------ 
function res = axial_bc(z0,zL) 
  
res = [  z0(1);  zL(2)]; 
  
% ------------------------------------ 
function yinit = axial_init(s) 
  
yinit = [  0;    0 ]; 

d2θ
ds2

= −
V
D
cos θ( )

θ 0( ) = 0 ʹθ L( ) = 0
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    S = deval(sol,s); 
    theta = S(1,:); 
    kappa = S(2,:); 
  
    x = tril(ones(n,n))*(cos(theta))'*ds; 
    y = tril(ones(n,n))*(sin(theta))'*ds; 
  
    figure(1) 
    hold on 
    plot(x,y,'k-’) 



PLATE THEORY
Deflection: 
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open:  (κ0)open = 0 closed:  (κ0)closed = κ0 > 0

F 

x 

y 

SOFT ROBOT GRIPPER

Deflection:  v = v(x)

•  What is v(x)?
•  What is the contact force F?
•  What is the gripping 

strength?



F 

x 

y m = D ʹ́v − κ0( )
ʹm = F⇒ ʹ́ʹv =

F
D

v(0) = v(L) = ʹv (0) = 0
m(L) = 0⇒ ʹ́v (L) = κ0

BCs

SOFT ROBOT GRIPPER
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ʹ́v (L) = κ0 ⇒ F =
3Dκ0
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v = F
6D

x3 − x2L( )

LINEAR BEAM THEORY



2V 

COULOMB’S LAW

F 

V = µ0F + τAt 

Amonton’s Law Adhesion-Controlled 
Friction 

µ0F ~ Mechanical sliding resistance 
of interlocking asperities 
τAt ~ interfacial shear strength 

According to Contact Mechanics At ≈ A0 + αF  
e.g. Greenwood-Williamson & Johnson-Kendall-Roberts Theories 



GRIPPING STRENGTH

V >µF = 3µDκ0
2L

Ignoring the initial adhesion  
(i.e. V0 ≈ 0) slip occurs when  

Limitations of Linearized theory: 
•  Kinematics not accurate for large deflection 
•  Does not account for influence of axial load during 

pick & place operations 

2V 

V = µ0F + τ(αF + A0) 

= µF + V0 

where  µ = µ0 + τα 
    and  V0 = τA0 
 



Two Finger Gripper

x0 

y0 

yL 

W 

Finger ~ Naturally Curved Elastic rod
•  Length L, curvature κ0
•  Natural curvature controlled by actuator

•  open:  (κ0)open
•  closed:  (κ0)closed

•  Flexural rigidity D = EI
•  E = Young’s Modulus
•  I = wh3/12 = Area Moment of Inertia

•  Fixed slope at base
•  Contact loads F and V at the tip

•  F = normal reaction force to prevent 
interpenetration

•  V = tangential frictional resistance to sliding
•  Large deflection bending

•  Small angle approximation and Euler-Bernoulli 
beam theory are not valid

•  Use Elastica theory – planar bending; large angle 
deflection; small bending strains



HW 524-673 HW 5:  Soft Robot Gripper Due:  4/15/15 

1 Flexible Bending Actuator.  A flexible bending 
actuator can be treated as an inextensible rod with a 
natural bending curvature κ0 and flexural rigidity D.  
Let L = 5 cm, D = 4×10-6 Nm2, κ0 = 60 m-1.  
 
Suppose that point loads F and V are applied to the 
free end, as shown.  The slope θ = θ(s) is determined 
by minimizing the functional 
 

Π =Π κ( ) = 1
2
Deq κ− κ0( )2

0

L

∫ ds−FxL −VyL , 

where κ = dθ/ds = θ$ and (xL, yL) are the coordinates of the end of the actuator.  From 
geometry, we know that  

xL = cosθds
0

L

∫ and yL = sinθds
0

L

∫  

Therefore, the potential energy has the form Π =Π κ( ) = Γ
0

L

∫ ds.  

According to the Calculus of Variations, this functional is minimized when θ satisfies the 
following “Euler-Lagrange” equation: 
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d
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&

'
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for the prescribed boundary conditions θ(0) = 0 and θ$(L) = κ0.

 

 

a) Starting with the Euler-Lagrange 
equation, obtain a 2nd-order ODE for θ. 
 

b) Simultaneously plot θ vs. s for F = 
V = 0 mN and F = V = 5 mN.  Hint:  
as shown in lecture, use bvp4c in 
MATLAB. 

 

c) Reconstruct the plot to the right for 
the shape of the rod when F = V = 0 
mN and F = V = 5 mN.  In MATLAB, 
use axis equal so that the plot is to 
scale.  Also, note that the x = x(s) and 
y = y(s) coordinates are calculated as 

x s( ) = cosθ ŝ( )dŝ
0

s

∫ and y s( ) = sinθ ŝ( )dŝ
0

s

∫  

 
2 Soft Robot Gripper.  Consider the gripper below composed of two of the flexural 
actuators from the previous problem. When the gripper is placed around the object, the 
actuators are activated and bend to make contact with the sides of the object, as shown.   
In this configuration, there is no vertical force on the gripper and the points of contact 
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0

s

∫  

 
2 Soft Robot Gripper.  Consider the gripper below composed of two of the flexural 
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V 
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y θ

Step 1:  Find θ = θ(s; F, V)

Step 2:  Find x = x(s) and y = y(s)

x0 

Step 3:  Find F such that xL := x(L) is equal to x0 

Step 4:  Calculate maximum frictional resistance µF. 
              If µF > V then contact will slip 



Step 1:  Find θ = θ(s; F, V)  
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Step 1:  Find θ = θ(s; F, V)  
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Boundary Value Problem

!!θ −
F
D
sinθ+ V

D
cosθ = 0 θ 0( ) = 0 !θ L( ) = κ0

In MATLAB, use bvp4c to solve θ for 0 ≤ s ≤ L: 
 
Step 1a:   Define system parameters & variables – F, V, D, κ0, L, s 
  
Step 1b:   Guess Solution 

  solinit = bvpinit(s,@mat4init); 
  %------------------------------ 
  function yinit = mat4init(s) 

   yinit = [ kappa0*s; kappa0];  
 
Step 1c:   Define ODE & BCs 

  let z = (θ θʹ) s.t. z1ʹ	=	z2	and	z2ʹ	=	(F/D)sin(z1) – (V/D)sin(z1)	 
  %------------------------------ 

  function dzds = mat4ode(s,z) 
  dzds = [  z(2); (F/D)*sin(z(1)) - (V/D)*cos(z(1)) ]; 
  %------------------------------ 

  function res = mat4bc(za,zb) 
  res = [  za(1); zb(2)-kappa0 ]; 



Boundary Value Problem

Step 1d:   Solve for z 
  sol = bvp4c(@mat4ode,@mat4bc,solinit); 

 
Step 1e:   Obtain θ

  z = deval(sol,s); 
  theta = z(1,:); 

 
Step 1f:   Plot θ vs. s

  figure(1); hold on 
  plot(s*1e3,theta,'k-') 
  xlabel('s (mm)') 
  ylabel('\theta (rad)’) 

 
*Use global to pass system parameters  

 (i.e. F, V, L, …) between functions 
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Step 2:  Find x = x(s) and y = y(s)

Given θ = θ (s), we can find x and y by integration: 
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0

s

∫  

 
2 Soft Robot Gripper.  Consider the gripper below composed of two of the flexural 
actuators from the previous problem. When the gripper is placed around the object, the 
actuators are activated and bend to make contact with the sides of the object, as shown.   
In this configuration, there is no vertical force on the gripper and the points of contact 
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Shortcut:   Let s = linspace(0,L,n)and ds = L/(n – 1)  
 
 
 
 
 
 

 
 

 
x = [0; tril(ones(n-1,n-1))*cos(theta(1:n-1))'*ds]; 
y = [0; tril(ones(n-1,n-1))*sin(theta(1:n-1))'*ds]; 
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Step 2:  Find x = x(s) and y = y(s)
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Step 3:  Find F such that xL := x(L) is equal to x0 

In MATLAB, use fzero: 
… 
F_guess = 1e-3; 
F = fzero(@get_x0,F_guess); 
% ------------------------- 
function res = get_x0(f) 
… 
xL = sum(cos(theta))*ds; 
res = xL - x0; 

xL = cosθds
0

L

∫ ≡ x0

Step 4:  Calculate maximum frictional resistance µF. 
              If µF > V then contact will slip 



Felt    Polyethylene Gelatin    

3-SEGMENT UNDULATING ROBOT



S1 S2 S3 

3-Segment Undulating Robot (2D Model)

2 Limb Pairs & 1 Torso 
à 3 Segments 

Segments:  S1, S2, S3 
•  Lengths Li 
•  s = arclength (left to right) 
•  L = L1 + L2 + L3 
•  S1 = [0,L1) 
•  S2 = [L1, L1 + L2) 
•  S3 = [L1 + L2, L] 



S1 S2 S3 

3-Segment Undulating Robot (2D Model)

•  Gravitational loading per unit 
length: w = (ρwt)g 
o  ρ = mass density 
o  w = limb width 
o  t = limb thickness 
o  g = gravity 

y1(s) 

s 

!!!!yi = −
w
Di

⇒ yi = −
ws4

24Di

+
ais

3

6
+
bis

2

2
+ cis+di

•  Elastic with tunable flexural 
rigidity Di = D(pi) and natural 
curvature κi = κ(pi) 
o  pi = signal input (i.e. 

pressure, voltage, current, …) 
o  yi = yi(s) vertical deflection 
o  mi = D(yiʹʹ – κi) = internal 

bending moment of ith 
segment 



y1(0) = y3(L) = 0
y1(L1) = y2(L1)
y2(L1 +L2) = y3(L1 +L2)
!y1(L1) = !y2(L1)
!y2(L1 +L2) = !y3(L1 +L2)

Step 1:  At the start of each time step, assume 
point contact at the ends and calculate the solution 
{ai, bi, ci, di} for the following BCs  

!!y1(0) = κ1
!!y3(L) = κ3
D1 !!y1(L1)− κ1{ }=D2 !!y2(L1)− κ2{ }
D2 !!y2(L1 +L2)− κ2{ }=D3 !!y3(L1 +L2)− κ3{ }
D1 !!!y1 L1( ) =D2 !!!y2 L2( )
D2 !!!y2 L1 +L2( ) =D3 !!!y3 L1 +L2( )

Kinematic Static/Natural 



Step 2:  Determine Contact Mode 
 
Mode 0: If y1ʹ(0) > 0 and y3ʹ(L) < 0, then robot  
makes tip contact at its ends (mode 0) 
 
Otherwise, the robot is expected to be engaged in one of the following modes 
of contact: 
 
 
 
 
 
 
 
 
 
Although other contact modes are possible, it is assumed that the limbs are 
actuated such that only configurations 0-vi will be observed.  
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Appendix A
The vertical deflection yi( s) along each segment is the solu-
tion to the balance equation d4yi/ds4 = −w/Di, where w is
the gravitational load (units = N/m). The balance equation
has the general solution

yi = − ws4

24Di
+ ais3

6
+ bis2

2
+ cis + di. (11)

Here ai, bi, ci, and di are constants of integration that are
determined by solving a system of boundary conditions.
Each of these sets of boundary conditions correspond to the
six contact modes presented in Figure 6.

At the start of each time step (when the values for pi are
updated), the constants in equation (8) are evaluated for the
following boundary conditions

y1( 0) = y3( L) = 0

y1( L1) = y2( L1)

y2( L1 + L2) = y3( L1 + L2),

y′
1( L1) = y′

2( L1)

y′
2( L1 + L2) = y′

3( L1 + L2)

y′′
1( 0) = κ1

y′′
3( L) = κ3

D1{y′′
1( L1) −κ1} = D2{y′′

2( L1) −κ2}
D2{y′′

2( L1 + L2) −κ2} = D3{y′′
3( L1 + L2) −κ3}

D1y′′′
1 ( L1) = D2y′′′

2 ( L1)

D2y′′′
2 ( L1 + L2) = D3y′′′

3 L1 + L2) .

The solutions {ai, bi, ci, di} are then substituted back into
equation (8) in order to obtain expressions for yi. If the seg-
ments deflect away from the surface at the two ends (i.e.

Fig. 6. Illustration of six contact modes in which at least one
segment is engaged in side contact. Each mode corresponds to a
unique set of boundary conditions.

y′
1(0) > 0 and y′

3( L) < 0), then the robot only makes tip
contact with the surface. Otherwise, the robot will engage in
one of the contact modes presented in Figure 6. We assume
that if y′

1(0) < 0 and |y′
1(0) | > |y′

3( L) |, then the robot is
engaged in modes i, ii, or iii. If, instead, y′

3( L) > 0 and
|y′

1( 0) | < |y′
3( L) |, then the robot is engaged in modes

iv, v, or vi. The mode of contact (i–vi) is determined by
examining each mode separately with the aid of Maple 13
(Waterloo Maple Inc.):

(i) The constants of integration {ai, bi, ci, di} and the
edge of side contact ξ are determined by solving
the 12 boundary conditions in equation (4) but with
y1(0) = 0 and y′′

1(0) = κ1 replaced by y1( ξ ) = 0 and
y′′

1( ξ ) = κ1, and adding the thirteenth boundary con-
dition y′

1( ξ ) = 0. This mode occurs if the solution for
ξ is positive and less than L1.

(ii) Solve {a2, b2, c2, d2, a3, b3, c3, d3, ξ } for the boundary
conditions y2( ξ ) = y3( L) = 0, y2( L1 +L2) = y3( L1 +
L2), y′

2( ξ ) = 0, y′
2( L1 + L2) = y′

3( L1 + L2), y′′
2( ξ ) =

κ2, y′′
3( L) = κ3, D2{y′′

2( L1 + L2) −κ2} = D3{y′′
3( L1 +

L2) −κ3}, D2y′′′
2 ( L1+L2) = D3y′′′

3 ( L1+L2). This mode
occurs if the solution for ξ is between L1 and L1 +L2.

(iii) Solve {a3, b3, c3, d3, ξ } for y3( ξ ) = y3( L) = y′
3

( ξ ) = 0 and y′′
3( ξ ) = y′′

3( L) = κ3. This mode occurs if
L1 + L2 < ξ < L.

(iv) Solve {a1, b1, c1, d1, ξ } for y1( 0) = y1( ξ ) = y′
1

( ξ ) = 0 and y′′
1( 0) = y′′

1( ξ ) = κ1. This mode occurs
if 0 < ξ < L1.

(v) Solve {a1, b1, c1, d1, a2, b2, c2, d2, ξ } for y1( 0) =
y2( ξ ) = 0, y1( L1) = y2( L1), y′

2( ξ ) = 0, y′
1( L1) =

y′
2( L1), y′′

1( 0) = κ1, y′′
2( ξ ) = κ2, D1{y′′

1( L1) −κ2} =
D2{y′′

2( L1) −κ2}, D1y′′′
1 ( L1) = D2y′′′

2 ( L1). This mode
occurs if L1 < ξ < L1 + L2.

(vi) Solve {ai, bi, ci, di} and ξ for the boundary conditions
in equation (4) but with y3( L) = 0 and y′′

3( L) = κ1

replaced by y3( ξ ) = 0 and y′′
3( ξ ) = κ3, and adding the

thirteenth boundary condition y′
3( ξ ) = 0. This mode

occurs if the solution for ξ is between L1 + L2 and L

For sets of modes {i, ii, iii} and {iv, v, vi}, the lengths of side
contact are defined as λ = ξ and λ = L − ξ , respec-
tively. Once the mode shape and the expressions for yi are
obtained, the global motion of the robot may be determined
by evaluating the horizontal distance $ between the two
ends.
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Appendix A
The vertical deflection yi( s) along each segment is the solu-
tion to the balance equation d4yi/ds4 = −w/Di, where w is
the gravitational load (units = N/m). The balance equation
has the general solution

yi = − ws4

24Di
+ ais3

6
+ bis2

2
+ cis + di. (11)

Here ai, bi, ci, and di are constants of integration that are
determined by solving a system of boundary conditions.
Each of these sets of boundary conditions correspond to the
six contact modes presented in Figure 6.

At the start of each time step (when the values for pi are
updated), the constants in equation (8) are evaluated for the
following boundary conditions

y1( 0) = y3( L) = 0

y1( L1) = y2( L1)

y2( L1 + L2) = y3( L1 + L2),

y′
1( L1) = y′

2( L1)

y′
2( L1 + L2) = y′

3( L1 + L2)

y′′
1( 0) = κ1

y′′
3( L) = κ3

D1{y′′
1( L1) −κ1} = D2{y′′

2( L1) −κ2}
D2{y′′

2( L1 + L2) −κ2} = D3{y′′
3( L1 + L2) −κ3}

D1y′′′
1 ( L1) = D2y′′′

2 ( L1)

D2y′′′
2 ( L1 + L2) = D3y′′′

3 L1 + L2) .

The solutions {ai, bi, ci, di} are then substituted back into
equation (8) in order to obtain expressions for yi. If the seg-
ments deflect away from the surface at the two ends (i.e.

Fig. 6. Illustration of six contact modes in which at least one
segment is engaged in side contact. Each mode corresponds to a
unique set of boundary conditions.

y′
1(0) > 0 and y′

3( L) < 0), then the robot only makes tip
contact with the surface. Otherwise, the robot will engage in
one of the contact modes presented in Figure 6. We assume
that if y′

1(0) < 0 and |y′
1(0) | > |y′

3( L) |, then the robot is
engaged in modes i, ii, or iii. If, instead, y′

3( L) > 0 and
|y′

1( 0) | < |y′
3( L) |, then the robot is engaged in modes

iv, v, or vi. The mode of contact (i–vi) is determined by
examining each mode separately with the aid of Maple 13
(Waterloo Maple Inc.):

(i) The constants of integration {ai, bi, ci, di} and the
edge of side contact ξ are determined by solving
the 12 boundary conditions in equation (4) but with
y1(0) = 0 and y′′

1(0) = κ1 replaced by y1( ξ ) = 0 and
y′′

1( ξ ) = κ1, and adding the thirteenth boundary con-
dition y′

1( ξ ) = 0. This mode occurs if the solution for
ξ is positive and less than L1.

(ii) Solve {a2, b2, c2, d2, a3, b3, c3, d3, ξ } for the boundary
conditions y2( ξ ) = y3( L) = 0, y2( L1 +L2) = y3( L1 +
L2), y′

2( ξ ) = 0, y′
2( L1 + L2) = y′

3( L1 + L2), y′′
2( ξ ) =

κ2, y′′
3( L) = κ3, D2{y′′

2( L1 + L2) −κ2} = D3{y′′
3( L1 +

L2) −κ3}, D2y′′′
2 ( L1+L2) = D3y′′′

3 ( L1+L2). This mode
occurs if the solution for ξ is between L1 and L1 +L2.

(iii) Solve {a3, b3, c3, d3, ξ } for y3( ξ ) = y3( L) = y′
3

( ξ ) = 0 and y′′
3( ξ ) = y′′

3( L) = κ3. This mode occurs if
L1 + L2 < ξ < L.

(iv) Solve {a1, b1, c1, d1, ξ } for y1( 0) = y1( ξ ) = y′
1

( ξ ) = 0 and y′′
1( 0) = y′′

1( ξ ) = κ1. This mode occurs
if 0 < ξ < L1.

(v) Solve {a1, b1, c1, d1, a2, b2, c2, d2, ξ } for y1( 0) =
y2( ξ ) = 0, y1( L1) = y2( L1), y′

2( ξ ) = 0, y′
1( L1) =

y′
2( L1), y′′

1( 0) = κ1, y′′
2( ξ ) = κ2, D1{y′′

1( L1) −κ2} =
D2{y′′

2( L1) −κ2}, D1y′′′
1 ( L1) = D2y′′′

2 ( L1). This mode
occurs if L1 < ξ < L1 + L2.

(vi) Solve {ai, bi, ci, di} and ξ for the boundary conditions
in equation (4) but with y3( L) = 0 and y′′

3( L) = κ1

replaced by y3( ξ ) = 0 and y′′
3( ξ ) = κ3, and adding the

thirteenth boundary condition y′
3( ξ ) = 0. This mode

occurs if the solution for ξ is between L1 + L2 and L

For sets of modes {i, ii, iii} and {iv, v, vi}, the lengths of side
contact are defined as λ = ξ and λ = L − ξ , respec-
tively. Once the mode shape and the expressions for yi are
obtained, the global motion of the robot may be determined
by evaluating the horizontal distance $ between the two
ends.
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Mode i-iii: If y1ʹ(0) < 0 and �y1ʹ(0) > y3ʹ(L), 
then left end of robot is expected to engage in 
“side contact.”  Additional unknown:  length 
of side contact ξ. 
 
ξ may span 1-3 segments.  Since this is not 
known apriori, we must determine {ai, bi, ci, 
di} ξ for each mode: 
 
(i)  Replace 
 

     with  
 
(ii)   
 
 
 
 
(iii)  

y1(0) = 0 !!y1(0) = κ1

y1(ξ) = 0 !y1(ξ) = 0 !!y1(ξ) = 0

y2(ξ) = y3(L) = "y2(ξ) = ""y2(ξ) = 0
y2(L1 +L2) = y3(L1 +L2)
"y2(L1 +L2) = "y3(L1 +L2)

!!y3(L) = κ3
D2 !!y2(L1 +L2)− κ2{ }=D3 !!y3(L1 +L2)− κ3{ }
D2 !!!y2 L1 +L2( ) =D3 !!!y3 L1 +L2( )

y3(ξ) = y3(L) = "y3(ξ) = ""y3(ξ) = 0
""y3(L) = κ3

0 < ξ < L1 ⇒	mode i   
L1 < ξ < L1 + L2 ⇒	mode ii   
L1 + L2  < ξ < L ⇒	mode iii   



Mode iv-vi: If y3ʹ(L) > 0 and �y1ʹ(0) < y3ʹ(L), 
then right end of robot is expected to bein 
“side contact.” 
 
(iv) 
 
 
(v)   
 
 
 
 
 
 
(vi)  Replace 
 

        with  

y3(L) = 0 !!y3(L) = κ1

y3(ξ) = 0 !y3(ξ) = 0 !!y1(ξ) = 0

y1(0) = y2(ξ) = "y2(ξ) = ""y2(ξ) = 0
y1(L1) = y2(L2 )
""y1(ξ) = κ1
D1 ""y1(L1)− κ1{ }=D2 ""y2(L1)− κ2{ }
D1 """y1 L1( ) =D2 """y2 L1( )

y1(0) = y1(ξ) = "y1(ξ) = ""y1(ξ) = 0
""y1(0) = κ1

0 < ξ < L1 ⇒	mode iv   
L1 < ξ < L1 + L2 ⇒	mode v   
L1 + L2  < ξ < L ⇒	mode vi   
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Appendix A
The vertical deflection yi( s) along each segment is the solu-
tion to the balance equation d4yi/ds4 = −w/Di, where w is
the gravitational load (units = N/m). The balance equation
has the general solution

yi = − ws4

24Di
+ ais3

6
+ bis2

2
+ cis + di. (11)

Here ai, bi, ci, and di are constants of integration that are
determined by solving a system of boundary conditions.
Each of these sets of boundary conditions correspond to the
six contact modes presented in Figure 6.

At the start of each time step (when the values for pi are
updated), the constants in equation (8) are evaluated for the
following boundary conditions

y1( 0) = y3( L) = 0

y1( L1) = y2( L1)

y2( L1 + L2) = y3( L1 + L2),

y′
1( L1) = y′

2( L1)

y′
2( L1 + L2) = y′

3( L1 + L2)

y′′
1( 0) = κ1

y′′
3( L) = κ3

D1{y′′
1( L1) −κ1} = D2{y′′

2( L1) −κ2}
D2{y′′

2( L1 + L2) −κ2} = D3{y′′
3( L1 + L2) −κ3}

D1y′′′
1 ( L1) = D2y′′′

2 ( L1)

D2y′′′
2 ( L1 + L2) = D3y′′′

3 L1 + L2) .

The solutions {ai, bi, ci, di} are then substituted back into
equation (8) in order to obtain expressions for yi. If the seg-
ments deflect away from the surface at the two ends (i.e.

Fig. 6. Illustration of six contact modes in which at least one
segment is engaged in side contact. Each mode corresponds to a
unique set of boundary conditions.

y′
1(0) > 0 and y′

3( L) < 0), then the robot only makes tip
contact with the surface. Otherwise, the robot will engage in
one of the contact modes presented in Figure 6. We assume
that if y′

1(0) < 0 and |y′
1(0) | > |y′

3( L) |, then the robot is
engaged in modes i, ii, or iii. If, instead, y′

3( L) > 0 and
|y′

1( 0) | < |y′
3( L) |, then the robot is engaged in modes

iv, v, or vi. The mode of contact (i–vi) is determined by
examining each mode separately with the aid of Maple 13
(Waterloo Maple Inc.):

(i) The constants of integration {ai, bi, ci, di} and the
edge of side contact ξ are determined by solving
the 12 boundary conditions in equation (4) but with
y1(0) = 0 and y′′

1(0) = κ1 replaced by y1( ξ ) = 0 and
y′′

1( ξ ) = κ1, and adding the thirteenth boundary con-
dition y′

1( ξ ) = 0. This mode occurs if the solution for
ξ is positive and less than L1.

(ii) Solve {a2, b2, c2, d2, a3, b3, c3, d3, ξ } for the boundary
conditions y2( ξ ) = y3( L) = 0, y2( L1 +L2) = y3( L1 +
L2), y′

2( ξ ) = 0, y′
2( L1 + L2) = y′

3( L1 + L2), y′′
2( ξ ) =

κ2, y′′
3( L) = κ3, D2{y′′

2( L1 + L2) −κ2} = D3{y′′
3( L1 +

L2) −κ3}, D2y′′′
2 ( L1+L2) = D3y′′′

3 ( L1+L2). This mode
occurs if the solution for ξ is between L1 and L1 +L2.

(iii) Solve {a3, b3, c3, d3, ξ } for y3( ξ ) = y3( L) = y′
3

( ξ ) = 0 and y′′
3( ξ ) = y′′

3( L) = κ3. This mode occurs if
L1 + L2 < ξ < L.

(iv) Solve {a1, b1, c1, d1, ξ } for y1( 0) = y1( ξ ) = y′
1

( ξ ) = 0 and y′′
1( 0) = y′′

1( ξ ) = κ1. This mode occurs
if 0 < ξ < L1.

(v) Solve {a1, b1, c1, d1, a2, b2, c2, d2, ξ } for y1( 0) =
y2( ξ ) = 0, y1( L1) = y2( L1), y′

2( ξ ) = 0, y′
1( L1) =

y′
2( L1), y′′

1( 0) = κ1, y′′
2( ξ ) = κ2, D1{y′′

1( L1) −κ2} =
D2{y′′

2( L1) −κ2}, D1y′′′
1 ( L1) = D2y′′′

2 ( L1). This mode
occurs if L1 < ξ < L1 + L2.

(vi) Solve {ai, bi, ci, di} and ξ for the boundary conditions
in equation (4) but with y3( L) = 0 and y′′

3( L) = κ1

replaced by y3( ξ ) = 0 and y′′
3( ξ ) = κ3, and adding the

thirteenth boundary condition y′
3( ξ ) = 0. This mode

occurs if the solution for ξ is between L1 + L2 and L

For sets of modes {i, ii, iii} and {iv, v, vi}, the lengths of side
contact are defined as λ = ξ and λ = L − ξ , respec-
tively. Once the mode shape and the expressions for yi are
obtained, the global motion of the robot may be determined
by evaluating the horizontal distance $ between the two
ends.
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Step 3:  Determine step length.  Vertical deflection y(s) of inextensible rods 
results in a change in horizontal separation Λ: 
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Fig. 3. Simulated and experimental actuation sequence for seg-
ments i = 1, 2, 3.

a vertical distance yi that varies along the arclength s. We
determine the algebraic expression yi = yi( s) by solving the
balance laws and boundary conditions in elastic rod theory
for static equilibrium (see Appendix A for more details).

Assuming moderate deflections, the slope of each seg-
ment and its cosine are approximated as y′

i = dyi/ds
and 1− ( y′

i)
2 /2, respectively. Therefore, the two ends are

separated by a distance

! =
∫ L1

0

{
1 − 1

2
( y′

1)2
}

ds +
∫ L1+L2

L1

{
1 − 1

2
( y′

2)2
}

ds

+
∫ L

L1+L2

{
1 − 1

2

(
y′

3

)2
}

ds. (10)

Here, Li corresponds to the length of the ith segment and
L = L1 + L2 + L3. Solutions for yi are also used to estimate
the length λ along which each end of the robot makes con-
tact with the ground. As discussed in the previous section,
this is used to calculate the interfacial sliding resistance and
determine which end will slide in order to accommodate
changes in ! at each time step.

We use Matlab R2009b (The Mathworks, Inc.) to cal-
culate and render the shape and displacement of the robot
for the sequence of pressures presented in Figure 3. The
simulation is quasi-static and the time steps correspond to
incremental changes in pressure. With this simulation, we
observe the gait of the soft robot over several undulatory
cycles and calculate the total lateral displacement # of the
robot’s leading end. This simulation also allows us to iden-
tify the peak values for pi and corresponding amplitude of
undulation that maximize # over a complete cycle.

3. Experimental method
We produce the robot by casting silicone elastomer
(EcoFlex 0030; Smooth-On, Inc.) in a three-dimensional
(3D), printed mold (Dimension Elite; Stratasys, Inc.) and
then sealing the casted features with a layer of addi-
tional elastomer and a relatively inextensible thin film
of poly(dimethylsiloxane) (PDMS) (Sylgard 184; Dow-
Corning) (Shepherd et al, 2011; Ilievski et al, 2011). Flexi-
ble pneumatic tubes deliver compressed air to each pneu-net
actuator. Air pressure is computer-controlled with indepen-
dently operated solenoid valves.

To achieve an undulatory gait, the three segments of the
robot are pressurized in succession from rear to front with 7
psi (0.5 atm) of pressure. Each segment is pressurized and
depressurized with the same sequence that is implemented
in the simulation (Figure 3). Shepherd et al. (2011) previ-
ously used a similar sequence to actuate a soft, quadruped
robot for undulatory locomotion on a rigid, flat surface.

Experiments are performed on flat substrates composed
of felt, polyethylene, and hydrated gelatin. For each of the
three substrates, the robot executes the same sequence of
undulatory motions. We record the motion using a video
camera and compare the relative position of the robot with
predictions obtained from theory at each stage of the actu-
ation sequence. Using this technique, we can establish the
displacement# and direction of travel after one undulatory
cycle.

4. Results and discussion
We performed the theoretical simulation for {Vt = 0, τ = 1},
{Vt = 0.5, τ = 1}, and {Vt = 1, τ = 0} in order to model
locomotion on felt, polyethylene, and wet gelatin, respec-
tively. In each simulation, the segments were actuated in a
staggered manner (Figure 3) that heuristically simulates the
two-anchor strategy for inchworm locomotion. The phase
lag between each segment introduces a temporal asymme-
try that allows the robot to translate by a finite amount by
the end of the undulatory cycle. We observed that the direc-
tion of this motion depends on the relative magnitude of the
coefficients Vt and τ .

Figure 4 presents the theoretical and experimental results
for locomotion on all three surfaces. The black and grey
lines correspond to the uninflated (passive) and inflated
(activated) segments, respectively. For locomotion on felt
{Vt = 0, τ = 1}, the robot will anchor itself along the length
of side contact and move from left to right, as shown in
Figure 4(a). Physically, this friction law implies that inter-
facial shear strength is strongly influenced by contact area
rather than pressure. On polyethylene, {Vt = 0.5, τ = 1}
and friction is governed by a combination of side and tip
contact. As segment 1 inflates, the left end of the robot
makes tip contact and initially slides to the right. However,
as the length of side contact in segments 2 and 3 decreases,
the friction at the tip Vt eventually exceeds Vs and the robot
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Step 4:  Determine direction of motion.  Assume Coulombic friction: 
 

 Vt  = sliding resistance of tip contact 
 τa = resistance of side contact 

•   τ = interfacial shear strength 
•   a = length of side contact 

  
End with larger sliding resistance remains fixed and the opposite slides to 
accommodate change in Λ. 



Felt    non-slippery 
    sliding resistance scales with contact 
    Normalized resistance:  Vt = 0, τ = 1 

 
Gelatin    slippery 

    deformable 
    sharp tip from point contact digs into substrate 
    flat (side) contact slides  
    Normalized resistance:  Vt = 1, τ = 0 

 
Polyethylene  mixed frictional resistance 

    Normalized resistance:  Vt = 0.75, τ = 0.25 
 

Examples



Input
Majidi et al. 5

0 200 400 600 800 1000
0

0.5

1

p 1/p
0

0 200 400 600 800 1000
0

0.5

1

p 2/p
0

0 200 400 600 800 1000
0

0.5

1

p 3/p
0

time step

Fig. 3. Simulated and experimental actuation sequence for seg-
ments i = 1, 2, 3.

a vertical distance yi that varies along the arclength s. We
determine the algebraic expression yi = yi( s) by solving the
balance laws and boundary conditions in elastic rod theory
for static equilibrium (see Appendix A for more details).

Assuming moderate deflections, the slope of each seg-
ment and its cosine are approximated as y′

i = dyi/ds
and 1− ( y′

i)
2 /2, respectively. Therefore, the two ends are

separated by a distance

! =
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0
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+
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Here, Li corresponds to the length of the ith segment and
L = L1 + L2 + L3. Solutions for yi are also used to estimate
the length λ along which each end of the robot makes con-
tact with the ground. As discussed in the previous section,
this is used to calculate the interfacial sliding resistance and
determine which end will slide in order to accommodate
changes in ! at each time step.

We use Matlab R2009b (The Mathworks, Inc.) to cal-
culate and render the shape and displacement of the robot
for the sequence of pressures presented in Figure 3. The
simulation is quasi-static and the time steps correspond to
incremental changes in pressure. With this simulation, we
observe the gait of the soft robot over several undulatory
cycles and calculate the total lateral displacement # of the
robot’s leading end. This simulation also allows us to iden-
tify the peak values for pi and corresponding amplitude of
undulation that maximize # over a complete cycle.

3. Experimental method
We produce the robot by casting silicone elastomer
(EcoFlex 0030; Smooth-On, Inc.) in a three-dimensional
(3D), printed mold (Dimension Elite; Stratasys, Inc.) and
then sealing the casted features with a layer of addi-
tional elastomer and a relatively inextensible thin film
of poly(dimethylsiloxane) (PDMS) (Sylgard 184; Dow-
Corning) (Shepherd et al, 2011; Ilievski et al, 2011). Flexi-
ble pneumatic tubes deliver compressed air to each pneu-net
actuator. Air pressure is computer-controlled with indepen-
dently operated solenoid valves.

To achieve an undulatory gait, the three segments of the
robot are pressurized in succession from rear to front with 7
psi (0.5 atm) of pressure. Each segment is pressurized and
depressurized with the same sequence that is implemented
in the simulation (Figure 3). Shepherd et al. (2011) previ-
ously used a similar sequence to actuate a soft, quadruped
robot for undulatory locomotion on a rigid, flat surface.

Experiments are performed on flat substrates composed
of felt, polyethylene, and hydrated gelatin. For each of the
three substrates, the robot executes the same sequence of
undulatory motions. We record the motion using a video
camera and compare the relative position of the robot with
predictions obtained from theory at each stage of the actu-
ation sequence. Using this technique, we can establish the
displacement# and direction of travel after one undulatory
cycle.

4. Results and discussion
We performed the theoretical simulation for {Vt = 0, τ = 1},
{Vt = 0.5, τ = 1}, and {Vt = 1, τ = 0} in order to model
locomotion on felt, polyethylene, and wet gelatin, respec-
tively. In each simulation, the segments were actuated in a
staggered manner (Figure 3) that heuristically simulates the
two-anchor strategy for inchworm locomotion. The phase
lag between each segment introduces a temporal asymme-
try that allows the robot to translate by a finite amount by
the end of the undulatory cycle. We observed that the direc-
tion of this motion depends on the relative magnitude of the
coefficients Vt and τ .

Figure 4 presents the theoretical and experimental results
for locomotion on all three surfaces. The black and grey
lines correspond to the uninflated (passive) and inflated
(activated) segments, respectively. For locomotion on felt
{Vt = 0, τ = 1}, the robot will anchor itself along the length
of side contact and move from left to right, as shown in
Figure 4(a). Physically, this friction law implies that inter-
facial shear strength is strongly influenced by contact area
rather than pressure. On polyethylene, {Vt = 0.5, τ = 1}
and friction is governed by a combination of side and tip
contact. As segment 1 inflates, the left end of the robot
makes tip contact and initially slides to the right. However,
as the length of side contact in segments 2 and 3 decreases,
the friction at the tip Vt eventually exceeds Vs and the robot
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κi = αpi 
 
Di = D0 + βpi  
 
Unitless analysis 
pi, α, D0, β are 
“normalized” 



Results

Felt    
Vt = 0, τ = 1 



Results

Polyethylene 
Vt = 0.75, τ = 0.25 



Results

Gelatin    
Vt = 1, τ = 0 


