McKibben Actuators

Daerden & Leiebei, Euro. J. Mech. Environ. Eng. 2002.

Naturally Flexible & Elastic Tunable Elastic Stiffness Lightweight

McKibben Actuators – Theory

CHOU AND HANNAFORD: MEASUREMENT AND MODELING OF ARTIFICIAL MUSCLES

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 1, FEBRUARY 1996

$$\lambda_{1} = L/L_{0}$$

$$\lambda_{2} = R/R_{0}$$

$$\lambda_{3} = 1/\lambda_{1}\lambda_{2} = L_{0}R_{0}/LR$$

$$W = \frac{E}{24} \left(\lambda_{1}^{4} + \lambda_{2}^{4} + \lambda_{3}^{4} - 3\right)$$

$$\Pi = \frac{1}{12} \pi E R_0 t_0 L_0 \left(\lambda_1^4 + \lambda_2^4 + \frac{1}{\lambda_1^4 \lambda_2^4} - 3 \right) - \pi R^2 L p - F L$$

$$R = \frac{D}{2} = \frac{b\sin\theta}{2n\pi} = \frac{b}{2n\pi}\sqrt{1 - \cos^2\theta}$$
$$\therefore R = \frac{b}{2n\pi}\sqrt{1 - \frac{L^2}{b^2}}$$
$$L = b\cos\theta$$

Prescribed internal pressure p and external tensile load F. Solve for L: $\Pi = \Pi(L; p, F)$ $\frac{d\Pi}{dL} = 0$

$$\frac{d\Pi}{dL} = 0 \Longrightarrow F = V_0 \frac{dW}{dL} - p \frac{dV_e}{dL}$$
$$= \frac{d}{dL} \left\{ \frac{1}{12} \pi E R_0 t_0 L_0 \left(\lambda_1^4 + \lambda_2^4 + \frac{1}{\lambda_1^4 \lambda_2^4} - 3 \right) - \pi R^2 L p \right\}$$

To solve for L, we must perform a numerical root finding. First, we must get an expression for $d\Pi/dL$:

Maple Code:

 $R := \frac{b}{2 n \pi} \int 1 - \frac{L^2}{b^2}$: $\lambda_1 := \frac{L}{L_0}$: $\lambda_2 := \frac{R}{R0}$: $\lambda_3 := \frac{1}{\lambda_1 \lambda_2}$: $W := \frac{E}{24} \left(\lambda_1^4 + \lambda_2^4 + \lambda_3^4 - 3 \right)$: $V0 := 2 \pi R0 t0 L0$: $Ve := \pi R^2 L$: $\Pi := W V \theta - p V e - F L :$ $\frac{d}{dL}\Pi$ $\frac{1}{12}E\left[\frac{4L^3}{L\theta^4} - \frac{1}{4}\frac{b^2\left(1 - \frac{L^2}{b^2}\right)L}{n^4\pi^4R\theta^4} - \frac{64L\theta^4n^4\pi^4R\theta^4}{L^5b^4\left(1 - \frac{L^2}{c^2}\right)^2} + \frac{64L\theta^4n^4\pi^4R\theta^4}{L^3b^6\left(1 - \frac{L^2}{c^2}\right)^3}\right]\pi R\theta t\theta L\theta + \frac{1}{2}\frac{pL^2}{\pi n^2} - \frac{1}{4}\frac{pb^2\left(1 - \frac{L^2}{b^2}\right)}{\pi n^2} - F$

Theoretical Results

Theoretical Results

Theoretical Results

 $R_0 = 2.5 \text{ mm} \quad E = 1 \text{ MPa}$ $L_0 = 50 \text{ mm} \quad \theta_0 = \pi/4$ $t_0 = 0.01 \text{ mm} \quad b = L_0/\cos(\theta_0) = 70.7 \text{ mm}$ n = 3.18

Observations

As $t0 \rightarrow 0$, the elasticity of the shell wall can be ignored.

- The actuator contracts to a rest length L* = 40.8 mm for *any* pressure p > 0
- When p = 0, only a little amount of tension is required to straighten out the helical fibers ($\theta \approx 0$, $L \approx b = 7.07$ cm)
- For large pressures, the solution is similar to before (i.e. shell wall thickness only matters when p is small)

Suppose we ignore the elasticity of the cylinder wall.

Π

 \Rightarrow

$$\Pi \approx -pV_{e} - FL$$

$$\Rightarrow F \approx -p \frac{dV_{e}}{dL} = -p \frac{d}{dL} \left\{ \pi \left(\frac{b}{2n\pi} \right)^{2} \left(1 - \frac{L^{2}}{b^{2}} \right) L \right\}$$

$$\therefore F \approx \frac{pb^{2}}{4\pi n^{2}} \left\{ \frac{3L^{2}}{b^{2}} - 1 \right\}$$

$$F \approx \sqrt{\frac{4n^{2}\pi F}{3p} + \frac{b^{2}}{3}}$$
For F = 0 and p > 0,
$$L = L^{*} = \frac{b}{\sqrt{3}}$$

$$E = 1 \text{ MPa}$$

$$L^{*} = 4.08 \text{ cm } \checkmark$$

$$E = 1 \text{ MPa}$$

$$L^{0} = 50 \text{ mm}$$

$$E = 1 \text{ MPa}$$

$$L^{0} = 50 \text{ mm}$$

$$E = 1 \text{ MPa}$$

$$L^{0} = 50 \text{ mm}$$

$$E = 1 \text{ MPa}$$

$$L^{0} = 50 \text{ mm}$$

$$E = 1 \text{ MPa}$$

$$L^{0} = 0.01 \text{ mm}$$

$$L^{*} = 4.08 \text{ cm } \checkmark$$

$$E = 1 \text{ MPa}$$

$$L^{*} = 4.08 \text{ cm } \checkmark$$

McKibben Actuators – Effective Spring Constant

Experiment

Nylon Shell $L_0 = 14 \text{ cm}$ R = 5.5 mm (@ 5 bar)

- Rest length changes with pressure; elasticity of the cylinder wall matters!
- Hysteresis why?

L* ≈ (14 – 3.5)cm = 10.5 cm (estimated) b = 1.732L* = 18.2 cm $n = \frac{b}{2R\pi} \sqrt{1 - \frac{L^2}{b^2}} = 4.3$ $k = \left\{ \frac{b\sqrt{3}}{2\pi n^2} \right\} p = 13.5 \frac{N}{cm} \quad (exp: ≈20 \text{ N/cm})$

Hysteresis

Two potential sources:

Viscous Damping

- viscoelasticity of shell wall
- viscous drag of pressurized air
- External Air drag
- increase with velocity/frequency

Coulombic Friction

- Sliding friction between fibers and shell wall
- invariant to loading frequency

Little change in the width of the tension-displacement loop (except at high frequencies) \Rightarrow Hysteresis primarily governed by friction

Efficiency

Quasi-static (no KE, Isothermal), Constant Pressure Loading

Hypothetical piston-valve system for determining energy required to pressurize air. Source tubing is assumed to have zero/negligible volume.

Step 1 ($D \rightarrow A$)

- Actuator starts out with ambient pressure $(P_0 = 1 \text{ bar})$ and rest length $L_0 = 14 \text{ cm}$.
- Actuator is stretched to a length $L_2 \approx 15.5$ cm.

Step 2 (A \rightarrow B)

- Internal pressure is increased from $P_0 = 1$ bar to $P_h = 6$ bar.
- The length $L = L_2$ is held fixed by increasing the tension from $F_{2min} \approx 5$ to $F_{2max} \approx 110$ N.

Step 3 ($B \rightarrow C$)

- The pressure is kept fixed at 6 bar while the tension is released.
- The length contracts to $L_1 \approx 10.7$ cm.

Step 4 ($C \rightarrow D$)

- Release pressure: $P \rightarrow P_0$
- Actuator lengthens back to $L_0 = 14$ cm.

Efficiency

V = total volume of air in compressor and actuator V_i = 55 cm³ = initial total air volume (after Step 1). P = air pressure in compressor and actuator

Step 2: $A \rightarrow B$

- Air pressure is increased (from $P_0 = 1$ bar to $P_h = 6$ bar) by reducing volume of compressor (by 45 cm³).
- Tension is applied to actuator to maintain constant length ($L_2 \approx 15.5$ cm) and actuator
- Total final volume is $V_1 = 10 \text{ cm}^3$.
- Since air doesn't enter or leave the system, PV = constant, i.e. $P_0V_i = P_hV_1$

Step 3: $B \rightarrow C$

- The pressure is kept fixed at 6 bar while the tension is released.
- Actuator contracts to $L_1 \approx 10.7$ cm.
- Compressor fully collapses, i.e. all the air is in the actuator ($V = V_2 \approx 2.5 \text{ cm}^3$)

Step 4: $C \rightarrow D$

- Release pressure (exhale) to environment
- Actuator lengthens back to $L_0 = 14$ cm.
- Volume remains constant (i.e. equal to volume V₂ in actuator)

Efficiency

$$W_{01} = -\int_{V_i}^{V_1} (P - P_0) dV = -\int_{V_i}^{V_1} P dV - P_0(V_i - V_1)$$

= $-P_h V_1 \int_{V_2}^{V_1} \frac{dV}{V} - P_0 V_i \left(1 - \frac{P_0}{P_h}\right)$
= $P_h V_1 \left(\log \frac{P_h}{P_0} - 1 + \frac{P_0}{P_h}\right)$.
 $W_{12} = (P_h - P_0)(V_1 - V_2)$

$$E_a = \frac{W_a}{W_{01} + W_{12}}$$

Measured: $E_a \approx 0.3$

- Energy lost when exhaling pressurized air to environment
- Actuator not performing mechanical work in Step 2
 - work input from compressor (W₀₁) is all wasted in Step 4
 - Step 2 is necessary for actuator to perform work in step 3
- Improve efficiency by exhaling/inhaling with a gas accumulator: $E_a \rightarrow 0.5!$

McKibben Actuators

THE MECHANICAL PROPERTIES OF THE MCKIBBEN ACTUATORS AND BIOLOGICAL MUSCLES

properties	units	McKibben actuators @ 5 bar			Biological
		Nylon shell	Fiberglass shell	Bridgestone	muscles
Resting length (L_o)	cm	14.0	20.0	14.7	
Dynamic range	L _o	0.75 - 1.1	0.86-1.14	0.79 - 1.02	0.64 - 1.12
Maximum tension	N	110 @ 1.1 L _o	56 @ 1.15 L _o	260 @ 1.02 L _o	
Stiffness	N/L _o	314	200	1130	
Work per cycle	NLo	19	7.8	30	
Cross section area	cm ²	0.95 @ 0.75 L _o	0.64 @ 0.85 L _o	2.0 @ 0.78 L _o	
Tension intensity	N/cm ²	116	88	130	35
Stiffness intensity	$N/L_o \text{cm}^2$	331	313	565	73
Work density per cycle	J/cm ³	0.20	0.12	0.15	0.13
Coulomb friction	Ν	2.5	5	5	0
Maximum velocity	L _o /s	> 6.19		(2 - 8 or 20
Average power density	W/cm ³	1.1			
Peak power density	W/cm ³	2.65			0.70
Energy efficiency	-	0.32 - 0.49			0.2 - 0.25

Klute & Hannaford (1998)

Solution w/ Mooney-Rivlin

ref. Glenn Klute & Blake Hannaford

"Accounting for Elastic Energy Storage in McKibben Artificial Muscle Actuators" Journal of Dynamic Systems, Measurement, and Control, vol. 122, pg. 386-388 (1998).

$$F_{mr} = V_0 \frac{dW}{dL} - p \frac{dV_e}{dL} \qquad W = C_{10} \left(\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3\right) + C_{01} \left(\lambda_1^2 \lambda_2^2 + \lambda_1^2 \lambda_3^2 + \lambda_2^2 \lambda_3^2 - 3\right)$$
$$C_{10} = 118.4 \text{ kPa} \qquad C_{01} = 105.7 \text{ kPa}$$

$$F_{\rm mr} = P \left\{ \frac{3(\lambda_1 L_o)^2 - B^2}{4N^2 \pi} \right\}$$
$$- V_b \left\{ \frac{1}{2L_o^3 \lambda_1^3} \left\{ 4(C_{10} + C_{01})L_o^2 \left(-1 + \lambda_1^4\right) + \frac{4L_o^6 \left(-1 + \lambda_1\right)\lambda_1^2 \left(1 + \lambda_1\right) \left(C_{10} + C_{01}\lambda_1^2\right)}{\left[-4N^2 \pi^2 R_o^2 + L_o^2 \left(-1 + \lambda_1^2\right)\right]^2} \right\}$$
$$- \frac{4L_o^4 \left(C_{10} + C_{01}\lambda_1^4\right)}{-4N^2 \pi^2 R_o^2 + L_o^2 \left(-1 + \lambda_1^2\right)} - \frac{L_o^4 \lambda_1^4 \left[C_{10} + C_{01} \left(-1 + 2\lambda_1^2\right)\right]}{N^2 \pi^2 R_o^2} \right\}$$

Klute & Hannaford (1998)

Klute & Hannaford (1998)

P=5 bar

P=4 bar

P=3 bar

P=2 bar