
Thin-Walled Tube
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Cylinder Inflation

Cylinder:   λ1 = L/L0  
    λ2 = R/R0 

   λ3 = 1/λ1λ2 = L0R0/LR  

V0 = 2πR0t0L0

For very long tubes, strain energy and air volume in caps/end is negligible to 
energy and volume in the cylinder. 
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Solution
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Non-dimensionalize p̂ = pR0
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Fig. 1. Relation between in!ation pressure P and volume expansion ratio v for a thin-walled tube, from Eq. (15). !m denotes the maximum
possible extension ratio in simple extension [10].

Fig. 2. Aneurysm in a tube in!ated past the critical pressure and
corresponding drawing by Mallock [11].

horizontal broken line in Fig. 1. However, when Jm is
in"nitely large the aneurysm is unbounded and failure
would then occur immediately on reaching the critical
pressure.

3.2. In!ation of a thin-walled spherical balloon [10]

In this case the deformation consists of an expan-
sion of the balloon radius by a factor !, causing equib-
iaxial extensions of ratio ! to be set up in the balloon
and a shrinkage ratio 1=!2 to occur in the wall thick-

ness, to maintain the rubber volume constant. The cir-
cumferential stresses t1 and t2 created by the in!ation
pressure P are equal and given by

t = t1 = t2 = 2C1(!2 − !−4)=[1− (J1=Jm)] (16)

from Eq. (9), on putting the stress t3 = 0.
The stresses set up in the balloon are generated by

the in!ation pressure P from Laplace’s relation

Pr=w = 2t=!3; (17)

where r and w are the unstrained radius and wall thick-
ness of the balloon.
The "nal result for the in!ation pressure P as a

function of the radial expansion ratio ! of the rubber
shell is

Pr=wC1 = 4(!−1 − !−7)=[1− (J1=Jm)]: (18)

Predictions of Eq. (18) are shown in Fig. 3 for three
values of Jm corresponding to values of !m, the max-
imum possible extension ratio in simple extension, of
6, 10 and ∞. Again, they suggest that an instability
will occur, in this case at a radial expansion ratio be-
tween 38% and 50%.
In practice, after a small initial in!ation the defor-

mation is quite complex. The balloon remains roughly
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