

(Dielectric)

"Soft" Parallel Plate Capacitor

- Sensor capacitance changes w/ pressure & stretch
- Actuator thickness decreases (area increases) under applied electrostatic pressure ("Maxwell Stress")
- Generator/Transducer elastic deformation changes electrostatic potential of surface charge

Implementation

- Circular Membrane prestretch and bond to a rigid ring
- Flexural Structure prestretch capacitor and bond to a flexible substrate
- **Stacked Capacitor** no prestretch; requires IPN treatment to enhance dielectric breakdown strength
- **Balloon** thin-walled spherical capacitor; inflate with air
- **Spring-roll** thin-walled cylindrical capacitor; prestretch and rolled around a helical spring

Parallel-Plate Capacitor

units: $F = "Farad" = N-m/V^2$ Electric permittivity: $\varepsilon = \varepsilon_r \varepsilon_0$ $\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m} = \text{vacuum permittivity}$ $\varepsilon_r = \text{relative permittivity}$ ("dielectric constant") e.g. air ~ 1; rubber ~ 2-5; silicon ~ 11; water ~ 100; PZT ~ 1000 $\frac{\text{Analogy}}{\Phi = \text{C}^{-1}\text{q} \sim \text{F} = \text{kx}}$ $\Phi \sim \text{F, C} \sim \text{k}^{-1}, \text{q} \sim \text{x}$

Electric displacement: D = q/AElectric Field: $E = \Phi/t$ Maxwell's equation: $D = \varepsilon E$

Capacitive Sensing

Uniaxial strain: $\lambda_1 = \lambda, \lambda_2 = \lambda_3 = \lambda^{-1/2} \Longrightarrow C/C_0 = \lambda$

Biaxial strain: $\lambda_1 = \lambda_2 = \lambda, \lambda_3 = \lambda^{-2} \Longrightarrow C/C_0 = \lambda^4$

Pressure/squeezing: $\lambda_3 = \lambda$, $\lambda_1 = \lambda_2 = \lambda^{-1/2} \Rightarrow C/C_0 = \lambda^{-2}$

Maxwell Stress

Equibiaxial loading: $\lambda_1=\lambda_2=\lambda^{-2}$, $\lambda_3=\lambda$

Prescribed surface charge: q

Voltage: $\Phi = q/C$

Maxwell Stress: $\sigma = qE/A$

Circular Membrane

High-speed electrically actuated elastomers with strain greater than 100% Ron Pelrine, Roy Konbluh, Qibing Pei, Jose Joseph, *Science* vol. 287 (2000)

1739 citations (as of 2/17/16)

Voltage limited by *electromechanical instability* when $\Phi = \Phi_{cr} := t_0 \sqrt{\frac{\mu}{\epsilon}}$

Typical values:

- $t_0 \sim 10^{-4} \, m$
- $\mu \sim 10^5 \, Pa$

 $\Phi_{\rm cr} = t_0 \sqrt{\frac{\mu}{\epsilon}} \sim 10^{-4} \sqrt{\frac{10^5}{10^{-11}}} \sim 10^4 \,\rm V$

• $\epsilon \sim 10^{-11} \, F/m$

Electromechanical Instability (Pull-In)

Very high dielectric strength for dielectric elastomer actuators in liquid dielectric immersion

T-G La and G-K Lau APL 102 192905 (2013)

Electromechanical Instability (Creasing)

Electro-creasing instability in deformed polymers: experiment and theory

Q. Wang, M. Tahir, L. Zhang, X. Zhao Soft Matter 7 6583 (2011)

The voltage is also limited by *electrical breakdown*:

- Internal electric field is so large that bound charge carriers get energized and mobilized
- The charges (electrons or ions) crash into neighbors and form a cascade of interactions
- Excited charges carry current through the dielectric and cause an electrical discharge (much like lightening in air)
- Dielectric momentarily acts like a conductor can lead to permanent damage
- To prevent breakdown, E must remain less than the breakdown strength E_b

$$\mathbf{E} = \frac{\Phi}{\lambda t_0} = \frac{\hat{\Phi}}{\lambda} \sqrt{\frac{\mu}{\epsilon}} < \mathbf{E}_{b} \Longrightarrow \boxed{\lambda > \frac{\hat{\Phi}}{\mathbf{E}_{b}} \sqrt{\frac{\mu}{\epsilon}}}$$

Typical values:

- $\mu \sim 10^5 \, Pa$
- $\bullet \quad \epsilon \sim 10^{\text{--}11}\,\text{F/m}$

•
$$E_b \sim 10^7 - 10^8 \, MV/m$$

$$\lambda > \frac{\hat{\Phi}}{E_{b}} \sqrt{\frac{\mu}{\epsilon}} \sim \left\{ \frac{1}{10^{8}} \sqrt{\frac{10^{5}}{10^{-11}}} \right\} \hat{\Phi} \sim \hat{\Phi}$$

Electrical Breakdown in Dielectrics

MANCHESTER 1824

The University of Manchester

Electrical breakdown through an electrical tree

R. Schurch, S. M. Rowland, R. S. Bradley and J. P. Withers

"A Novel Approach for Imaging of Electrical Trees"

IEEE Conference on Electrical Insulation and Dielectric Phenomena, Montreal - 2012

R. Schurch, S. M. Rowland and J. P. Withers

"Techniques for Electrical Tree Imaging"

IEEE Conference on Imaging Systems and Techniques, Manchester - 2012

Polymer film stretched on a rigid frame Top electrode	Bottom electrode		Material	Prestrain (x,y) (%)	Actuated relative thickness strain (%)	Actuated relative area strain (%)	Field strength (MV/m)
Rigid	∠ L'→x					ılar strain	\frown
irame voitage	OIT	Voltage on	HS3 silicone	(68,68)	48	93	110
				(14,14)	41	69	72
			CF19-2186 silicone	(45,45)	39	64	350
				(15,15)	25	33	160
			VHB 4910 acrylic	(300,300)	61	158	412
Voltage	off	Voltage on		(15,15)	29	40	55

High-speed electrically actuated elastomers with strain greater than 100% Ron Pelrine, Roy Konbluh, Qibing Pei, Jose Joseph, *Science* vol. 287 (2000)

Energy Method

When charge is the free variable, use the "internal electrical energy": $u = \frac{1}{2} \underline{D} \cdot \underline{E}$

The total electrical energy is calculated by integrating over the volume in the <u>current</u> placement: $\Gamma = \int_{B} \left\{ \frac{1}{2} \underline{D} \cdot \underline{E} \right\} dV$

For a parallel-plate capacitor, $\underline{E} = (F/h)\underline{e}_3$ and $\underline{D} = (q/A)\underline{e}_3$

$$\Gamma = \int_{B} \left\{ \frac{1}{2} \underline{D} \cdot \underline{E} \right\} dV = \frac{1}{2} \left(\frac{q}{A} \right) \left(\frac{\Phi}{h} \right) (Ah) = \frac{1}{2} q\Phi$$

Noting that F = q/C, $\Gamma = \frac{q^2}{2C}$

Referring to the "spring analogy" $F \sim F$, $u \sim q$, and $k \sim C^{-1}$, the internal electrical energy has the same form as the elastic spring energy ku²/2.

As with spring energy, an alternative way to derive G for a parallel plate capacitor is by integrating F for charge increasing from 0 to q: $\Gamma = \int_0^q \frac{\hat{q}}{C} d\hat{q}$

Example

Consider the same Ogden solid as before:

W =
$$\frac{\mu}{4} \left(\lambda_1^4 + \lambda_2^4 + \lambda_3^4 - 3 \right) = \frac{\mu}{4} \left(\frac{2}{\lambda^2} + \lambda^4 - 3 \right)$$

The total potential energy is $\Pi = WV_0 + \Gamma$

where
$$\Gamma = \frac{q^2}{2C} = \frac{hq^2}{2\epsilon A} = \frac{\lambda^2 h_0 q^2}{2\epsilon A_0}$$

$$\Rightarrow \Pi = \frac{\mu}{4} \left(\frac{2}{\lambda^2} + \lambda^4 - 3 \right) A_0 h_0 + \frac{\lambda^2 t_0 q^2}{2\epsilon A_0}$$

If q is prescribed as a fixed value, then Π is only minimized w.r.t. λ :

$$\frac{d\Pi}{d\lambda} = \mu \left(\lambda^3 - \frac{1}{\lambda^3}\right) A_0 t_0 + \frac{\lambda t_0 q^2}{\varepsilon A_0} \equiv 0$$

... must solve numerically for λ .

Now suppose that Φ is prescribed/fixed and q is unknown. This is analogous to stretching a spring with a prescribed force F. In this case, the potential becomes

$$\Pi = WV_0 + \Gamma - q\Phi.$$

The proof is similar to before. Applying a voltage Φ to the capacitor results in a charge q* = C Φ at electrostatic equilibrium. Now suppose that the capacitor is loaded with additional charge δq . The electrostatic work required to elevate δq to a voltage Φ must be balanced by the change in internal electrical energy:

$$\delta \Gamma = \int_{q^*}^{q^* + \delta q} \Phi \, dq = \Phi \delta q \Longrightarrow \delta \big(\Gamma - q \Phi \big) = 0$$

This implies that for variations in q, Γ must be replaced by $\hat{\Gamma} = \Gamma - q\Phi$.

Now, Π must be minimized w.r.t. λ and q:

$$\Pi = \frac{\mu}{4} \left(\frac{2}{\lambda^2} + \lambda^4 - 3 \right) A_0 h_0 + \frac{\lambda^2 t_0 q^2}{2\epsilon A_0} - q \Phi$$

$$\frac{d\Pi}{dq} = \frac{\lambda^2 t_0 q}{\epsilon A_0} - \Phi \equiv 0 \Longrightarrow q = \frac{\epsilon A_0}{\lambda^2 t_0} \Phi$$

$$\frac{d\Pi}{d\lambda} = \mu \left(\lambda^3 - \frac{1}{\lambda^3} \right) A_0 t_0 + \frac{\lambda t_0 q^2}{\epsilon A_0} \equiv 0 \qquad \therefore \lambda = \left\{ 1 - \frac{\epsilon \Phi^2}{\mu t_0^2} \right\}^{1/6} \checkmark$$

For cases when Φ is prescribed, a shortcut is to use the electrical enthalpy instead of internal energy. This is associated with a change of variables for Π :

$$\Pi = \Pi (\lambda, q) \rightarrow \tilde{\Pi} = \tilde{\Pi} (\lambda, \Phi).$$

Recall $\Pi = WV_0 + \Gamma - q\Phi$

$$= WV_0 - q\Phi + \int_0^q \Phi d\hat{q}$$

Performing an integration by parts ("Legendre Transformation")

$$\begin{split} \tilde{\Pi} &= WV_0 - q\Phi + q\Phi - \int_0^{\Phi} q \, d\hat{\Phi} \\ &= WV_0 - \frac{1}{2}C\Phi^2 \\ \text{``Electrical Enthalpy''} \\ \Pi &= \frac{\mu}{4} \left(\frac{2}{\lambda^2} + \lambda^4 - 3\right) A_0 t_0 - \frac{\varepsilon A_0 \Phi^2}{2\lambda^2 t_0} \\ &\frac{d\Pi}{d\lambda} = \mu \left(\lambda^3 - \frac{1}{\lambda^3}\right) A_0 t_0 + \frac{\varepsilon A_0 \Phi^2}{\lambda^3 t_0} \equiv 0 \qquad \therefore \lambda = \left\{1 - \frac{\varepsilon \Phi^2}{\mu t_0^2}\right\}^{1/6} \end{split}$$

DEA Generator

DEA Generator

Harvest electrical energy from changes in fluid pressure

- Balloon
- Energy harvesting shoe
- Ocean waves

i Compressed Air In

ii Voltage Applied

Balloon Generator

Kaltseis, Suo, Bauer, et al. APL (2011)

DEA Generator

to mimetics laboratory

Soft Power Generation

Iain Anderson (Univ. Auckland)

0.8 J per step Avg. Power ~ 1 Watt Specific Energy: 0.3J/g **33% conversion**

PolyWEC

Polymeric Wave Energy Converter

- EU funded project (2012-2016; >2mil. euros)
- Lead: Marco Fontana (SSSA) ۲
- Partner: Univ. of Edinburgh ۲

DEG