
Lecture 1

NONLINEAR

ELASTICITY




Soft-Matter Engineering:  Mechanics, Design, & Modeling


Mechanics

Rigid/Hard Systems 
bending or torsion (but not stretching)



 
 
 
 
 
small strains (~0.1% metals; ~1% plastics)


 
 
 
 
 
linearized stress-strain response; “Linear Elasticity”


Soft Systems 
 
 
stretch (~10-100% strain)


 
 
 
 
 
large deflections (including self-contact)


 
 
 
 
 
nonlinear stress-strain response; “Finite Elasticity”


Design

Actuators/Transducers
 
pneumatics, dielectrics, shape memory, 


 
 
 
 
 
 
IPMCs, bio-hybrid

Circuits/Sensors 
 
 
flex circuits, conductive fabrics, wavy circuits, 


 
 
 
 
 
 
soft microfluidics


Modeling 
 
derived from governing equations of nonlinear elasticity


 
 
 
Pneumatics – elastic shell theory


 
 
 
Dielectrics – elastic membrane theory


 
 
 
Shape Memory – elastic rod theory




THEORY OF ELASTICITY


(Displacement Formulation)


Displacement of points in an 
elastic body:


u = u(X) ∀X∈B0 

Strains ~ gradient of 
displacements


u ⇒ ε(X)  Strain Tensor 
   ~ rotation + stretch 
   ~ stretch + rotation 

Constitutive Law: Relate strains 
(or stretch) with stress: 


ε ⇒ σ(X)  Stess Tensor 

Balance Laws:

∇E⋅σ = 0 ∀X∈B0   (internal) 
σ⋅n = t    ∀X∈∂B0 (boundary) 



THEORY OF ELASTICITY


Choice of materials dictates the limits of stress and strain as well 
as the constitutive law. 

For small strains, the constitutive law can be linearized:

•  for linear elastic, homogenous, isotropic solids, use Hooke’s Law

•  w/ Hooke’s Law, elasticity can be represented by only two values:


-  Young’s modulus (E) and Poisson’s ratio (ν)

-  Shear modulus (µ) and Bulk modulus (K)

-  Lame constants λ and µ


For large strains, the constitutive relationships are typically 
nonlinear and require additional elastic coefficients.


In most cases, the constitutive law and its coefficients must be 
determined experimentally with materials testing equipment. 




ε =
ΔL
L0

Uniaxial Loading


Reference Current 

F 

L0 
L = L0 + ΔL,

A0 A 
B0 B 

Strain: 

Stretch: λ =
L
L0

=1+ε

Incompressibility:  V = V0 
⇒!AL = A0L0 
⇒!A = A0/λ,
 

Recall the definition for engineering/nominal stress: 
 
This is valid for small deformations but significantly under-
estimates the true (“Cauchy”) stress for moderate deformations: 

σe =
F
A0

σ =
F
A
= λσe



Uniaxial Loading


For uniaxial loading with small strains, σe 
and ε are related by Hooke’s Law: 

σe = Eε⇒ F = EA0 λ −1( )
λ 

F 

EA0 

1 What happens if we replace σe with σ? 

λ 

F EA0 

1 

EA0 

lim
λ→∞
F = EA0

σ = Eε⇒ F = EA0 1−
1
λ

⎛

⎝
⎜

⎞

⎠
⎟

These represent two distinct constitutive models, neither of 
which is realistic for elastomers. 



Rubber Mechanics


Vulcanized natural rubber macromolecule:   
•  ~5000 isoprene units (C-C bonding) 
•  cis-1,4-polyisoprene 
•  “molecular spaghetti” 
•  Sulfer cross-links every ~100 units (2%) 
•  Between the cross-links, each isoprene 

unit is a freely rotating link 

If monomer units are free to rotate, why is there any resistance to deformation? 

For any load and configuration, we can calculate the Gibbs free energy Π of the 
rubber system.  Changes in Π are subject to the 1st Law of Thermodynamics:   

δΠ = δ(U – Q)  1st Law:  δU = δQ ! δΠ = 0 

δQ = t ⋅ δudS
∂B
∫U = Γ – TS = Helmholtz Free Energy 

Γ = internal chemical bonding energy  
S = system entropy = applied mechanical work 



Gibbs Free Energy for a 1-DOF System


α,

Π,

Solutions 

α1
�
, α2

�
, α3

�
,

δQ = FδL
δQ−δU = 0

⎫
⎬
⎪

⎭⎪
⇒ F = dU

dL

L = L0 + ΔL,

A 

B 

δΠ = 0,

At static equilibrium, the system 
free (potential) energy must be 
“stationary” w.r.t. shape/
configuration. 



At static equilibrium, the total potential energy Π = Π(u) must be stationary w.r.t. 
infinitesimally small changes in u.    
 
If the deformation can be parameterized so that Π = Π(α1, α2,…, αn), then this 
implies the Rayleigh-Ritz criterion for equilibrium: 

∂Π
∂α1

=
∂Π
∂α2

= ... = ∂Π
∂αn

= 0

Principle of Stationary Potential


Consider a 1-DOF system, i.e. Π = Π(α)  
 e.g.  uniaxial loading:  α = λ,
  inflating sphere:  α = R 

 
In this case, α is the solution to the equation dΠ/dα = 0 



2nd Law of Thermodynamics


2nd Law of Thermodynamics:  ΔStot = ΔS + ΔSe  ≥ 0 
 
•  S and Se are the entropy of the system and surrounding (external), respectively 
•  ΔSe = –Ω/T, where Ω is the heat transferred from the surroundings 
•  For fixed surface tractions and fixed temperature it follows (by definition)  

that ΔΠ = Ω – TΔS    
•  This implies ΔStot = ΔS – Ω/T= –ΔΠ/T, i.e. total entropy decreases with 

increasing Gibbs free energy (potential energy) 

•  Now suppose that is locally Π maximized ⇒ any perturbation will cause Π to 
decrease and universal entropy to increase. 

•  After perturbation, will the system return to its original state? 
It can’t – returning to the original state requires a decrease in Stot, hence 
violating the 2nd Law.  

•  Therefore such equilibrium states are unstable. 

•  In the absence of external tractions (e.g. fixed kinematic constraints/
displacements), a separate analysis is performed using Helmholtz (U) instead 
of Gibbs (Π) free energy. 



Principle of Minimum Potential


Consider the solution α = α2
* 

•  Changing α results in a decrease in Gibbs Free Energy 
•  For fixed surface tractions, this corresponds to an increase in universal 

Entropy Stot 
•  This implies that returning to the extremizing value α = α2

* will decrease Stot 
•  Therefore, α = α2

* is a solution that violates the 2nd Law of Thermodynamics 

In contrast, for α = α1
* or α = α3

* 

•  Changing α increases Π and hence reduces total entropy 
•  The system will spontaneously return to the equilibrium state in order to 

increase universal Entropy.    

α,

Π,

α1
�
, α2

�
, α3

�
,

Solutions that maximize Π 
are unstable (i.e. α2

*) 
 
Solutions that minimize Π 
are stable (i.e. α1

* and α3
*) 



Polymers


In the case of uniaxial loading, recall that F = dU/dL.  
Noting that U = Γ – TS and δΓ ≈ 0, it follows that 

Semi-Crystaline  
e.g. HDPE 
Relatively rigid 

Completely Amorphous  
e.g. Vulcanized Rubber 
Soft & Stretchable 

Crystalline, semi-crystalline, and glassy materials deform through 
lengthening/shortening of interatomic bonds ⇒!change in internal energy (Γ) 
 
Elastomers deform through changes in macromolecular configuration 
(“morphology”) ⇒!change in entropy (S) 

F ≈ −T dS
dL
⎛

⎝
⎜

⎞

⎠
⎟
T

What is the entropy of rubber and how does it scale with stretch? 

“Partial straightening” is an ordering processes that decreases entropy and thus 
requires mechanical work input. 



Entropy of of Rubber


The configurational entropy is defined as S = k ln(M), where  
•  k = Boltzmann’s constant  
•  M = discrete number of configurations that the macromolecular 

chains can adopt to fill a prescribed volume.   
Simplifying assumptions: 

•  N chains each with n links of uniform length ℓ 
•  This ignores the stochasticity of chain lengths and 

cross-linking 
•  For random shapes, there exists a root-mean-

square average end-to-end length ru ~ ℓn1/2
 

For an end-to-end vector R = xi + yj + zk,  

M =M0
N exp −

3N x2 + y2 + z2( )
2ru

2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Here, M0 is the number of 
possible configurations for a 
single chain when R = 0 (i.e. 
chain loops around)  

Ref:  “Entropy and Rubber Elasticity” by Leonard Nash 
   J. Chemical Education,  56 (6) 363-368 (1979) 



Entropy of of Rubber


S = NklnM0 −
3Nk
2ru

2
x2 + y2 + z2( )

Now consider the following deformation: 
 

 x = λxx0   y = λyy0   z = λzz0 
 
where x0

2 = y0
2 = z0

2 = ru
2/3, and define Su as the initial entropy (i.e. prior to 

deformation). 

⇒ΔS =S−Su = −
Nk
2

λx
2 +λy

2 +λz
2 −3( )

For incompressible deformation and uniaxial loading, λx = λ, λy = λz = λ-1/2   

ΔS = −Nk
2

λ2 +
1
λ
−3

⎛

⎝
⎜

⎞

⎠
⎟

dS
dλ
⎛

⎝
⎜

⎞

⎠
⎟
T

= −Nk λ −
1
λ2

⎛

⎝
⎜

⎞

⎠
⎟



Entropy of Rubber


F = −T dS
dL
⎛

⎝
⎜

⎞

⎠
⎟
T

= −T dS
dλ
⎛

⎝
⎜

⎞

⎠
⎟
T

dλ
dL

Noting that L = λL0 and dλ/dL = 1/L0,   

F = NkT
L0

λ −
1
λ2

⎛

⎝
⎜

⎞

⎠
⎟

Expressing this in terms of a nominal 
engineering stress σe = F/A0, and noting 
that A0L0 = V0 = V, 

σe =C1 λ −
1
λ2

⎛

⎝
⎜

⎞

⎠
⎟ where C1 = NkT/V 



BALANCING FORCES


Another difference between linear and nonlinear/finite elasticity is 
the configuration or “placement” in which we balance forces:


REFERENCE
 CURRENT


F 

L0 
L = L0 + ΔL,

A0 A 
B0 B 

At static equilibrium, the forces acting on the body must balance.



However, for the same forces, we will calculate different stresses 
(and thus different strains/stretches) depending on what 
placement we are in.




EXAMPLE


2P 

L0, A0, θ0,

2P 

L, θ,

We must balance forces in 
the Current Placement!!!


P = Fcosθ0 =
EA0
3

λ −
1
λ2

⎛

⎝
⎜

⎞

⎠
⎟cosθ0

P = Fcosθ
L0 sinθ0 = Lsinθ

⇒ cosθ = 1− 1
λ2
1− cos2 θ0( )

F =
EA0
3

λ −
1
λ2

⎛

⎝
⎜

⎞

⎠
⎟

∴P =
EA0
3

λ −
1
λ2

⎛

⎝
⎜

⎞

⎠
⎟ 1−

1
λ2
1− cos2 θ0( ) ✓


✗




NEO-HOOKEAN SOLID


For a Neo-Hookean Solid, recall the expression for the change in  
Helmholtz free energy:


ΔU = −TΔS = NkT
2

λx
2 +λy

2 +λz
2 −3( )

This implies that strain energy density has the form


W =C1 λ1
2 +λ2

2 +λ3
2 −3( )

⇒σ i = 2C1λ i
2 − p

Example 1:  Uniaxial Loading

σ1 = σ

σ2 = σ3 = 0

λ1 = λ

λ2 = λ3

λλ2
2 =1

⇒λ2 =
1
λ

σ2 = 0 ≡
2C1
λ

− p⇒ p =
2C1
λ

σ = 2C1λ
2 − p

∴σ = 2C1 λ
2 −
1
λ

⎛

⎝
⎜

⎞

⎠
⎟ ✓




NEO-HOOKEAN SOLID


Example 2:  Equibiaxial Loading


σ1 = σ2 = σ

σ3 = 0
λ1 = λ2 = λ

λ2λ3 =1⇒λ3 =
1
λ2

σ3 = 0 ≡
2C1
λ4

− p⇒ p =
2C1
λ4

σ = 2C1λ
2 − p

∴σ = 2C1 λ
2 −
1
λ4

⎛

⎝
⎜

⎞

⎠
⎟

Example 3:  Sphere Inflation


assume equibiaxial loading:  R >> t ! σ1 = σ2 =: σ >> σ2 ~ p   

t0 t 

ℓ0 
ℓ0 ℓ 

ℓ 

E1 

E2 

E3 
R0 

p 

R 



BALLOON INFLATION CONT.


λ1 = λ2 = λ ≡
R
R0

λ3 =
1

λ1λ2
=
1
λ2

W =C1 2λ
2 +
1
λ4

−3
⎛

⎝
⎜

⎞

⎠
⎟

Π=WV−Up

V =V0 ≈ 4πR0
2t0

Up = −pVe

Ve =
4
3
πR3

Π= 4πR0
2t0C1 2

R
R0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

+
R0
R

⎛

⎝
⎜

⎞

⎠
⎟

4

−3
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
−
4
3
πR3p

dΠ
dR

= 4πR0
2t0C1

4R
R0
2
−
4R0

4

R5
R0
R

⎛

⎝
⎜

⎞

⎠
⎟

4⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
4πR2p ≡ 0

At equilibrium, Π must be minimized 
w.r.t. R. This implies dΠ/dR = 0: 




R/R0
1 1.5 2 2.5 3 3.5 4 4.5 5

pR
0/
Et

0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

BALLOON INFLATION CONT.


p =
2t0E
3R0

R0
R
−
R0
7

R7
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
Solve for p:




WHAT ABOUT SHEAR?!


In addition to stretch, materials typically undergo shear.   
 

However, for any elastic deformation, there is always an orientation 
where shear disappears.   

Consider an elastic body with reference placement B0.   
 

During deformation, points X∈B0 get mapped to a final position 
x = χ(X) = X + u, where  
•  x∈B are the final positions 
•  B is the current placement  
•  u = u(X) is the displacement field  

The strain tensor ε is calculated from the gradient of x:   
•  ε = ε(F) 
•  F = ∇χ= “Deformation Gradient” 
•  Both ε and F are 2nd order tensors (~3x3 matrices)   



WHAT ABOUT SHEAR?!


According to the Polar Decomposition Theory, F  can be represented 
as F = RU, where R is a rotation tensor and U is a tensor with only 
diagonal elements: 

For any deformation, there exist principal directions (p1, p2, p3) 
along which the material undergoes only pure axial stretch.  

E1 

E2 

χ!
Stretch (U)! Rotation (R)!

λ1!
λ2!

U ~
λ1 0 0
0 λ2 0
0 0 λ3

"

#

$
$
$

%

&

'
'
'



EXAMPLE


Consider a cylinder under pure torsion.  Just because it doesn’t 
change length or diameter, it is incorrect that it contains zero stretch:   

E1 

E2 χ!

χ!

λ1!
λ2!

shear w.r.t. (E1, E2) 

stretch w.r.t. (p1, p2) 



In general, during virtual displacement, prescribed surface tractions  
t perform mechanical work on the elastic body: 
 
 
 
As before, this work must all be stored as elastic strain energy, i.e. 
 
 

δQ = t ⋅ δudS
∂B
∫

δQ ≡ δU⇔δU−δQ = 0

Now consider the following loading conditions: 
 
•  Concentrated Traction = Point Load 
•  Concentrated Traction Couple = Moment 
•  Enclosed Air Pressure 

GENERAL LOADING CONDITIONS




t ⋅ δudS
∂B
∫ = F ⋅ δu

Concentrated Traction = Point Load: 

Concentrated Traction Couple = Moment: 

t ⋅ δudS
∂B
∫ =Mδθ

!
!

Enclosed Air Pressure: 

t ⋅ δudS
∂B
∫ = pn ⋅ δudS

∂B
∫ = pδVe



!
!

The potential energy Π of an elastic body represents the total energy 
associated with both the internal elastic strain energy w and the 
mechanical work Q of external tractions t: 

Π = WdV−
B0

∫ t ⋅udS
∂B
∫ − F∑ ⋅u− Mθ∑ − pVe

t F 

M 

δU = δQ

δWdV
Bo

∫ = t ⋅udS
∂B
∫ +F ⋅ δu+Mδθ+ pδVe

δ WdV
Bo

∫ − t ⋅udS
∂B
∫ −F ⋅u−Mθ− pVe

'
(
)

*)

+
,
)

-)
= 0

∴δΠ = 0



The condition δΠ = 0 implies that the potential energy must be 
stationary at static equilibrium.  Since the functional Π = Π(u) is 
smooth and continuous, this condition is satisfied when minimized 
w.r.t. kinematically admissable deformations u ∈!K . 
 
Here, K  represents the space of all possible functions u = u(X) that 
satisfy the prescribed kinematic boundary conditions. 
 
If the deformation can be parameterized so that Π = Π(α1, α2,…, αn) 
is a function of scalars instead of a functional, then the condition  
δΠ = 0 corresponds to  
 
(Rayleigh-Ritz criterion) ∂Π

∂α1
=
∂Π
∂α2

= ... = ∂Π
∂αn

= 0


