"DEMES" Frame-based Flexural DEA

Theoretical Model

Curvilinear Coord. (s, y) convects with the plane of the bending frame

Theoretical Model

Curvilinear Coord. (s, y) convects with the plane of the bending frame

Frame Deflection:

$$
\begin{aligned}
& \mathbf{e}_{\mathrm{s}}=\mathbf{e}_{\mathrm{x}} \cos \phi+\mathbf{e}_{\mathrm{y}} \sin \phi \\
& \mathbf{e}_{\mathrm{n}}=-\mathbf{e}_{\mathrm{x}} \sin \phi+\mathbf{e}_{\mathrm{y}} \cos \phi \\
& \kappa=\frac{\mathrm{d} \phi}{\mathrm{ds}}
\end{aligned}
$$

Membrane Deformation:

$$
\mathbf{u}=\mathbf{u}(\mathrm{s}, \mathrm{y})=\mathrm{u}_{\mathrm{s}} \mathbf{e}_{\mathrm{s}}+\mathrm{u}_{\mathrm{y}} \mathbf{e}_{\mathrm{y}}+\eta \mathbf{e}_{\mathrm{n}}
$$

"Dirilichet" Boundary Conditions:

$$
u_{s}=u_{y}=\eta=0 \quad \forall \mathbf{X} \in \partial S
$$

Modeling is challenging because we must simultaneously examine the deformation of both the frame and the membrane.
Use Principle of Minimum Potential: $\quad \Pi=\int_{\Omega_{0}} \Psi d V+\int_{\Omega} \Gamma d v+\int_{\mathscr{F}} U d A$

Prestretch Dielectric

$$
\lambda_{\mathrm{s}}=\ell / \mathrm{L}_{0} \quad \lambda_{\mathrm{y}}=\mathrm{w} / \mathrm{W}_{0}
$$

Frame will bend if prestretch λ_{0} is greater than critical buckling load.

Theoretical Model

$$
\Pi=\int_{\Omega_{0}} \Psi d V+\int_{\Omega} \Gamma d v+\int_{\mathscr{F}} U d A
$$

Elastic strain energy density: $\Psi=C_{1}\left\{\lambda_{s}{ }^{2}\left[\left(\eta_{, s}+\kappa u_{s}\right)^{2}+\left(1+u_{s, s}-\kappa \eta\right)^{2}+u_{y, s}^{2}\right]\right.$ $\left.\left.\begin{array}{l}\begin{array}{l}\text { Bending } \\ \text { energy of frame: }\end{array} \int_{-\ell / 2}^{\ell / 2} \frac{1}{2} D \kappa^{2} d s\end{array} \right\rvert\,+\frac{1}{\lambda_{s}{ }^{2} \lambda_{y}{ }^{2}\left[\eta_{, s}^{2}+(1-\kappa \eta)^{2}\left(1+\eta_{, y}^{2}\right)\right]}-3\right\}$

Electrical enthalpy: $\Gamma=-\frac{1}{2} \epsilon\left(\frac{\Phi}{\mu H}\right)^{2}$
Stretch through thickness: $\mu \approx \frac{1}{\lambda_{s} \lambda_{y} \sqrt{\eta_{, s}^{2}+(1-\kappa \eta)^{2}\left(1+\eta_{, y}^{2}\right)}}$

Theoretical Model

$$
\begin{aligned}
\Pi & =\int_{\Omega_{0}} \Psi d V+\int_{\Omega} \Gamma d v+\int_{\mathscr{F}} U d A \\
& =\int_{-\ell / 2}^{\ell / 2} \int_{-w / 2}^{w / 2} \mathscr{L} d y d s+\int_{-\ell / 2}^{\ell / 2} \frac{1}{2} D \kappa^{2} d s
\end{aligned}
$$

"Lagrangian density": $\mathscr{L}=(\Psi+\Gamma) H / \lambda_{s} \lambda_{y}$
A condition for Π to be minimized is that each function $\varphi(s, y) \in\left\{\eta, u_{s}, u_{y}\right\}$ Must minimize the "Euler-Lagrange equations":

$$
\mathscr{L}_{\varphi}-\left(\partial \mathscr{L} / \partial \varphi_{, s}\right)_{, s}-\left(\partial \mathscr{L} / \partial \varphi_{, y}\right)_{, y}=0 \quad \varphi=0 \quad \forall \mathbf{X} \in \partial \mathrm{~S}
$$

The proof of this is obtained using the "Calculus of Variations".
These PDEs are equivalent to the Newtonian equations for balancing internal stresses in the membrane (in the frame and membrane).

Theoretical Model

This implies $\mathrm{u}_{\mathrm{y}}=0$ and that η and u_{s} must satisfy the following system of "elliptic" PDEs:

$$
\begin{aligned}
& -\nabla \cdot\left(\mathbf{c}_{1} \nabla \eta\right)+\mathrm{a}_{1} \eta=\mathrm{f}_{1} \\
& -\nabla \cdot\left(\mathbf{c}_{2} \nabla \mathrm{u}_{\mathrm{s}}\right)+\mathrm{a}_{2} \mathrm{u}_{\mathrm{s}}=\mathrm{f}_{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{c}_{1}= & \left\{\lambda_{s}{ }^{2}\left(1-\lambda_{y}{ }^{2} \mu^{4}\right)-\frac{\lambda_{s} \lambda_{y} \epsilon \Phi^{2}}{2 C_{1} H}\right\} \mathbf{e}_{s} \otimes \mathbf{e}_{s} \\
& +\left\{\lambda_{y}{ }^{2}\left(1-\lambda_{s}{ }^{2} \mu^{4}(1-\kappa \eta)^{2}\right)\right. \\
& \left.-\frac{\lambda_{s} \lambda_{y} \epsilon \Phi^{2}}{2 C_{1} H}(1-\kappa \eta)^{2}\right\} \mathbf{e}_{y} \otimes \mathbf{e}_{y} \\
\mathbf{c}_{2}= & \lambda_{s}{ }^{2} \mathbf{e}_{s} \otimes \mathbf{e}_{s}+\lambda_{y}{ }^{2} \mathbf{e}_{y} \otimes \mathbf{e}_{y}
\end{aligned}
$$

$$
\begin{aligned}
a_{1}= & \lambda_{s}{ }^{2} \kappa^{2}\left\{1-\lambda_{y}{ }^{2} \mu^{4}\left(1+\eta_{, y}\right)^{2}\right\} \\
& -\frac{\lambda_{s} \lambda_{y} \epsilon \Phi^{2}}{2 C_{1} H} \kappa^{2}\left(1+\eta_{, y}^{2}\right) \\
a_{2}= & \lambda_{s}{ }^{2} \kappa^{2} \\
f_{1}= & \lambda_{s}{ }^{2} \kappa\left\{1+2 u_{s, s}-\lambda_{y}{ }^{2} \mu^{4}\left(1+\eta_{, y}\right)^{2}\right\} \\
& +\lambda_{s}{ }^{2} \kappa, s u_{s}-\frac{\lambda_{s} \lambda_{y} \epsilon \Phi^{2}}{2 C_{1} H} \kappa\left(1+\eta_{, y}^{2}\right) \\
f_{2}= & -\lambda_{s}{ }^{2}(\kappa, s \eta+2 \kappa \eta, s)
\end{aligned}
$$

Approximation

Another condition for static equilibrium is that Π must be minimized w.r.t. к.

$$
\frac{\partial \Pi}{\partial \kappa}=0 \Rightarrow \int_{-w / 2}^{w / 2} \frac{\partial L}{\partial \kappa} d y+D \kappa=0
$$

Simultaneously solving this along with the PDEs requires FEA (e.g. ANSYS, ABAQUS, COMSOL).

To simplify the analysis, we note that the frame is primarily loaded by axial tension from the membrane. From the post-buckling solution of an Euler column we assume that κ may be approximated as

$$
\kappa=\frac{\mathrm{d} \phi}{\mathrm{ds}} \approx \alpha_{0} \cos \left(\frac{\pi \mathrm{~s}}{\ell}\right)
$$

Solution Method

1. Select a voltage V
2. Determine α
2.1 Use 'fminbnd' to find α that minimizes Π
2.2 For each value of α, calculate Π
2.2.1 Use 'pdenonlin' to solve PDEs and obtain $\left\{\eta, \mathrm{u}_{\mathrm{s}}, \mathrm{u}_{\mathrm{y}}\right\}$
2.2.2 Numerically integrate Lagrangian density
2.2.3 Calculate bending energy of frame: Uf $=\mathrm{D} \ell \alpha^{2} / 4$
3. Calculate total bending angle of frame: $\phi=\alpha l / \pi$

Code

```
function phi = plot_phi
    global ell
    ell = 2e-2;
    n = 20;
    Voltage = linspace(0,20e3,n);
    for i = 1:n
        alpha = get_alpha(Voltage(i));
        phi(i) = (alpha*ell/pi)*180/pi;
    end
    plot(Voltage*1e-3,phi,'k-',Voltage*1e-3,-phi,'k-')
    xlabel('\Phi (kV)')
    ylabel('\phi (degrees)')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function alpha = get_alpha(V)
    global Phi u0
    u0 = 0;
    Phi = V;
    alpha = fminbnd(@get_Pi,0,200)
```


Code

```
function Pi = get_Pi(a);
    global Phi u0 ell
    model = createpde(2);
    E = 170e3;
C1 = E/6;
H = 130e-6;
eps = 2*8.85e-12;
ls = 2;
ly = 1;
w = 1e-2;
Ef = 1e6;
wf = 1e-2;
hf = 1.3e-3;
D = Ef*wf*hf^3/12;
alpha = a;
R1 = [3,4,-ell/2,ell/2,ell/2,-ell/2,-w/2,-w/2,w/2,w/2]';
gm = [R1];
ns = char('R1')';
sf = 'R1';
g = decsg(gm,sf,ns);
geometryFromEdges(model,g);
```

Define Membrane Boundary

Code

```
-\nabla\cdot(\mp@subsup{c}{1}{}\nabla\eta)+\mp@subsup{a}{1}{}\eta=\mp@subsup{f}{1}{}
-\nabla\cdot(\mp@subsup{c}{2}{}\nabla\mp@subsup{u}{\textrm{s}}{})+\mp@subsup{\textrm{a}}{2}{}\mp@subsup{\textrm{u}}{\textrm{s}}{}=\mp@subsup{\textrm{f}}{2}{}
    k = sprintf('%d*cos(pi*x/%d)',alpha,ell);
    ks = sprintf('-(%d/%d)*pi*sin(pi*x/%d)',alpha,ell,ell);
    mu = sprintf('1./(%d*%d*sqrt(ux(1,: ).^2 + (1 - %s,*u(1,:)).^2.*(1 + uy(1,: ) ^2) ))', 人
ls,ly,k);
    gamma = sprintf('%d*%d*%d*(%d.^2)./(2*%d*%d)',ls,ly,eps,Phi,C1,H);
    c1 = sprintf('%d^2.*(1 - (%d.^2).*(%s.^4)) - %s',ls,ly,mu,gamma);
    c2 = sprintf('%d^2.*(1 - (%d.^^2).*(%s.^4).**(1 - %s.*u(1,:)).^2) - %s.*(1 - %s.*u\
(1,:)).^2',ly,ls,mu,k,gamma,k);
    c3 = sprintf('%d^2',ls);
    c4 = sprintf('%d^2',ly);
    a1 = sprintf("(%d^2)*(%s).^2.**(1 - (%d.^2).*(%s.^4).*(1 + uy(1,:)).^2) - %s.*(%s.^2).\
*(1 + uy(1,:).^2)',ls,k,ly,mu,gamma,k);
    a2 = sprintf('(%d^2)*(%s).^2',ls,k);
    f1 = sprintf('(%d^2)*(%s.*(1 + 2*ux(2,:) - (%d.^2).*(%s.^4).*(1 + uy(1,:)).^2) + %s.|
*u(2,:)) - %s.*(%s.^2).*(1 + uy(1,:).^2)',ls,k,ly,mu,ks,gamma,k);
    f2 = sprintf('-(%d^2)*(%s.*u(1,:) + 2*%s.*ux(1,:))',ls,ks,k);
    c = char(c1,'0','0',c2,c3,'0','0',c4);
    a = char(a1,a1);
    f = char(f1,f2);
```


Code


```
Extract solutions (and their derivatives)
```

```
n = 100;
```

n = 100;
s = linspace(-ell/2,ell/2,n);
s = linspace(-ell/2,ell/2,n);
ds = ell/(n-1);
ds = ell/(n-1);
y = linspace(-w/2,w/2,n);
y = linspace(-w/2,w/2,n);
dy = w/(n-1);
dy = w/(n-1);
kappa = alpha*cos(pi*s/ell);
kappa = alpha*cos(pi*s/ell);
[p,e,t] = meshToPet(mesh);
[p,e,t] = meshToPet(mesh);
[ux,uy] = pdegrad(p,t,u);
[ux,uy] = pdegrad(p,t,u);
eta = tri2grid(p,t,u,s,y);
eta = tri2grid(p,t,u,s,y);
eta_s = tri2grid(p,t,ux(1,:)',s,y);
eta_s = tri2grid(p,t,ux(1,:)',s,y);
eta_y = tri2grid(p,t,uy(1,:)',s,y);
eta_y = tri2grid(p,t,uy(1,:)',s,y);
us = tri2grid(p,t,u((numNodes+1):2*numNodes),s,y);
us = tri2grid(p,t,u((numNodes+1):2*numNodes),s,y);
us_s = tri2grid(p,t,ux(2,:)',s,y);
us_s = tri2grid(p,t,ux(2,:)',s,y);
us_y = tri2grid(p,t,uy(2,:)',s,y);

```
    us_y = tri2grid(p,t,uy(2,:)',s,y);
```


Results

$$
\begin{aligned}
& \ell=2 \mathrm{~cm}, w=1 \mathrm{~cm}, H=130 \mu \mathrm{~m}, \\
& E=170 \mathrm{kPa}, C_{1}=E / 6, \epsilon=\epsilon_{r} \epsilon_{0}, \epsilon_{r}=2, \\
& E_{f}=1 \mathrm{MPa}, w_{f}=1 \mathrm{~cm}, h_{f}=1.3 \mathrm{~mm},
\end{aligned}
$$

$$
\Phi=0, \lambda_{\mathrm{s}}=2, \text { and } \lambda_{\mathrm{y}}=1
$$

Results

$$
\begin{aligned}
& \ell=2 \mathrm{~cm}, w=1 \mathrm{~cm}, H=130 \mu \mathrm{~m}, \\
& E=170 \mathrm{kPa}, C_{1}=E / 6, \epsilon=\epsilon_{r} \epsilon_{0}, \epsilon_{r}=2, \\
& E_{f}=1 \mathrm{MPa}, w_{f}=1 \mathrm{~cm}, h_{f}=1.3 \mathrm{~mm},
\end{aligned}
$$

$\lambda_{\mathrm{s}}=2$, varying Φ

varying $\boldsymbol{\lambda}_{\mathrm{s}}$

Simplified DEMES Model

Model and design of dielectric elastomer minimum energy structures
 S. Rosset, O. A. Araromi, J. Shintake, H. R. Shea, Smart Materials \& Structures (2014)

(PP) microsystems for space technologies laboratory Epfl-limis

Assumptions:

- Membrane detached along side
- Frame (modulus $=\mathrm{Y}_{\mathrm{f}}$) bends into a pure circle
- Membrane $=$ Gent solid with shear modulus μ.

$$
\begin{aligned}
& U_{t o t}(\theta, V)=\frac{1}{2} \frac{Y_{f} \cdot b \cdot d^{3}}{12 \cdot c} \theta^{2}-\frac{c \cdot w \cdot t_{0}}{\lambda_{p}} \frac{\mu J_{m}}{2} \\
& \times \ln \left(1-\frac{\lambda^{2}+\lambda^{-2}-2}{J_{m}}\right)-\frac{\epsilon \cdot c \cdot w \cdot V^{2} \lambda^{2}}{2 t_{0} \lambda_{p}}
\end{aligned}
$$

Simplified DEMES Model

$$
\begin{aligned}
& U_{\text {tot }}(\theta, V)=\frac{1}{2} \frac{Y_{f} \cdot b \cdot d^{3}}{12 \cdot c} \theta^{2}-\frac{c \cdot w \cdot t_{0}}{\lambda_{p}} \frac{\mu J_{m}}{2} \times \ln \left(1-\frac{\lambda^{2}+\lambda^{-2}-2}{J_{m}}\right)-\frac{\epsilon \cdot c \cdot w \cdot V^{2} \lambda^{2}}{2 t_{0} \lambda_{p}} \\
& \frac{\partial U_{\text {tot }}}{\partial \theta}=0
\end{aligned}
$$

No Voltage
Influence of membrane thickness and prestretch

Simplified DEMES Model

$$
U_{\text {tot }}(\theta, V)=\frac{1}{2} \frac{Y_{f} \cdot b \cdot d^{3}}{12 \cdot c} \theta^{2}-\frac{c \cdot w \cdot t_{0}}{\lambda_{p}} \frac{\mu J_{m}}{2} \times \ln \left(1-\frac{\lambda^{2}+\lambda^{-2}-2}{J_{m}}\right)-\frac{\epsilon \cdot c \cdot w \cdot V^{2} \lambda^{2}}{2 t_{0} \lambda_{p}}
$$

Creep

Figure 10. PET frames rolled around a post and left for one night at 80° (left) exhibited a significant creep when released from the post (right).

