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FIG. 1. Electromechanical response of flexure-mode DEA
with polyacrylate frame and EGaIn-coated dielectric.

and X3 ∈ [−H/2, H/2]. The frame is also naturally flat
and rectangular, with an interior rectangular opening of
width w and length ℓ in the principal E1 and E2 direc-
tions, respectively. The border of the frame has a thick-
ness hf , width wf/2 in the E2 direction, and Young’s
modulus Ef . The exposed surfaces of the membrane are
coated with electrodes that remain intact (and electri-
cally conductive) during stretching (e.g. carbon grease
or liquid metal).
In order to bond the edges of the membrane to the

frame interior, the membrane must be given a bi-axial
prestretch {λs = ℓ/L,λy = w/W}. If the membrane
tension is sufficiently large, the frame will bend in the
E1 − E3 plane. Let S denote a ruled surface that is ev-
erywhere tangent to the bending frame and define the
convecting surface coordinates s = λsX1 ∈ [ℓ/2, ℓ/2] and
y = λyX2 ∈ [w/2, w/2] along the length and width,
respectively. The normalized tangent vectors are es =
cosφE1 + sinφE3 and ey = E2, where κ = dφ/ds is
the frame curvature and φ = φ(s) is the bending angle.
Since the frame is primarily loaded by axial tension from
the membrane, It will be assumed that κ has the form
κ = α cos(πs/ℓ). This kinematic restriction represents
a simplifying approximation that is based on the post-
buckling solution of an Euler column and is consistent
with experimental observations .
Let u = u(s, y) = uses + uyey + ηen denote the dis-

placement of the membrane’s midplane w.r.t. S, where
en = es×ey = − sinφE1+cosφE3 is the unit normal. In
the current placement Ω, material points have position

x = χ(X) = r+ uses + (y + uy)ey + ηen + µX3e3 . (1)

Here, χ : Ω0 → Ω is the deformation mapping, r = r(s) is
the space curve formed by the convecting X1-coordinate
line (for X2 = X3 = 0; r,s = es), e3 is the surface
normal acting through the thickness of the membrane,
and µ is the principle stretch along e3. The surface nor-
mal is computed as e3 = es

′ × ey
′/||es′ × ey

′||, where
es

′ = ∂χ/∂s and ey
′ = ∂χ/∂y are the covarient bases

that span the tangent plane at each point on the mid-
plane S ′ = {x ∈ Ω : X3 = 0}. The gradient of the
deformation mapping F = ∇χ is used to determine the
strain energy density Ψ = Ψ(s, y) and Jacobian determi-
nant J = det(F) of the membrane.
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FIG. 2. Solution with Φ = 0 for the following parameters: ℓ
= 2 cm, w = 1 cm, H = 130 µm, E = 170 kPa, C1 = E/6,
ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012 F/m, Ef = 1 MPa, wf = 1
cm, hf = 1.3 mm, λs = 2, and λy = 1.

As with other studies of DEA electro-elastostatics,
the dielectric is treated it as an incompressible Neo-
Hookean solid with coefficient of elasticity C1.26,28 There-
fore, Ψ = C1(IB − 3), where IB = tr(B) is the first
invariant of the Left Cauchy-Green deformation ten-
sor B = FF⊤. In general, the Lagrangian gradient
∇L = {∂/∂Xi}Ei should be used to calculate F, i.e.
∇χ = χ ⊗ ∇L. However, it is instead more convenient
to take the gradient w.r.t. the operator ∇ = R∇L,
where R = es ⊗ E1 + ey ⊗ E2 + en ⊗ E3 and {X1, X2}
are replaced with {s/λs, y/λy}. This is admissible since

F̂ := χ⊗∇ = FR⊤ ⇒ F̂F̂⊤ ≡ B and det(F̂) ≡ J . Since
the membrane is incompressible, the condition J = 1 is
used to solve for µ:

µ ≈
1

λsλy
√

η2,s + (1− κη)2(1 + η2,y)
. (2)
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with polyacrylate frame and EGaIn-coated dielectric.

and X3 ∈ [−H/2, H/2]. The frame is also naturally flat
and rectangular, with an interior rectangular opening of
width w and length ℓ in the principal E1 and E2 direc-
tions, respectively. The border of the frame has a thick-
ness hf , width wf/2 in the E2 direction, and Young’s
modulus Ef . The exposed surfaces of the membrane are
coated with electrodes that remain intact (and electri-
cally conductive) during stretching (e.g. carbon grease
or liquid metal).
In order to bond the edges of the membrane to the

frame interior, the membrane must be given a bi-axial
prestretch {λs = ℓ/L,λy = w/W}. If the membrane
tension is sufficiently large, the frame will bend in the
E1 − E3 plane. Let S denote a ruled surface that is ev-
erywhere tangent to the bending frame and define the
convecting surface coordinates s = λsX1 ∈ [ℓ/2, ℓ/2] and
y = λyX2 ∈ [w/2, w/2] along the length and width,
respectively. The normalized tangent vectors are es =
cosφE1 + sinφE3 and ey = E2, where κ = dφ/ds is
the frame curvature and φ = φ(s) is the bending angle.
Since the frame is primarily loaded by axial tension from
the membrane, It will be assumed that κ has the form
κ = α cos(πs/ℓ). This kinematic restriction represents
a simplifying approximation that is based on the post-
buckling solution of an Euler column and is consistent
with experimental observations .
Let u = u(s, y) = uses + uyey + ηen denote the dis-

placement of the membrane’s midplane w.r.t. S, where
en = es×ey = − sinφE1+cosφE3 is the unit normal. In
the current placement Ω, material points have position

x = χ(X) = r+ uses + (y + uy)ey + ηen + µX3e3 . (1)

Here, χ : Ω0 → Ω is the deformation mapping, r = r(s) is
the space curve formed by the convecting X1-coordinate
line (for X2 = X3 = 0; r,s = es), e3 is the surface
normal acting through the thickness of the membrane,
and µ is the principle stretch along e3. The surface nor-
mal is computed as e3 = es

′ × ey
′/||es′ × ey

′||, where
es

′ = ∂χ/∂s and ey
′ = ∂χ/∂y are the covarient bases

that span the tangent plane at each point on the mid-
plane S ′ = {x ∈ Ω : X3 = 0}. The gradient of the
deformation mapping F = ∇χ is used to determine the
strain energy density Ψ = Ψ(s, y) and Jacobian determi-
nant J = det(F) of the membrane.
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FIG. 2. Solution with Φ = 0 for the following parameters: ℓ
= 2 cm, w = 1 cm, H = 130 µm, E = 170 kPa, C1 = E/6,
ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012 F/m, Ef = 1 MPa, wf = 1
cm, hf = 1.3 mm, λs = 2, and λy = 1.

As with other studies of DEA electro-elastostatics,
the dielectric is treated it as an incompressible Neo-
Hookean solid with coefficient of elasticity C1.26,28 There-
fore, Ψ = C1(IB − 3), where IB = tr(B) is the first
invariant of the Left Cauchy-Green deformation ten-
sor B = FF⊤. In general, the Lagrangian gradient
∇L = {∂/∂Xi}Ei should be used to calculate F, i.e.
∇χ = χ ⊗ ∇L. However, it is instead more convenient
to take the gradient w.r.t. the operator ∇ = R∇L,
where R = es ⊗ E1 + ey ⊗ E2 + en ⊗ E3 and {X1, X2}
are replaced with {s/λs, y/λy}. This is admissible since

F̂ := χ⊗∇ = FR⊤ ⇒ F̂F̂⊤ ≡ B and det(F̂) ≡ J . Since
the membrane is incompressible, the condition J = 1 is
used to solve for µ:

µ ≈
1

λsλy
√

η2,s + (1− κη)2(1 + η2,y)
. (2)
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and X3 ∈ [−H/2, H/2]. The frame is also naturally flat
and rectangular, with an interior rectangular opening of
width w and length ℓ in the principal E1 and E2 direc-
tions, respectively. The border of the frame has a thick-
ness hf , width wf/2 in the E2 direction, and Young’s
modulus Ef . The exposed surfaces of the membrane are
coated with electrodes that remain intact (and electri-
cally conductive) during stretching (e.g. carbon grease
or liquid metal).
In order to bond the edges of the membrane to the

frame interior, the membrane must be given a bi-axial
prestretch {λs = ℓ/L,λy = w/W}. If the membrane
tension is sufficiently large, the frame will bend in the
E1 − E3 plane. Let S denote a ruled surface that is ev-
erywhere tangent to the bending frame and define the
convecting surface coordinates s = λsX1 ∈ [ℓ/2, ℓ/2] and
y = λyX2 ∈ [w/2, w/2] along the length and width,
respectively. The normalized tangent vectors are es =
cosφE1 + sinφE3 and ey = E2, where κ = dφ/ds is
the frame curvature and φ = φ(s) is the bending angle.
Since the frame is primarily loaded by axial tension from
the membrane, It will be assumed that κ has the form
κ = α cos(πs/ℓ). This kinematic restriction represents
a simplifying approximation that is based on the post-
buckling solution of an Euler column and is consistent
with experimental observations .
Let u = u(s, y) = uses + uyey + ηen denote the dis-

placement of the membrane’s midplane w.r.t. S, where
en = es×ey = − sinφE1+cosφE3 is the unit normal. In
the current placement Ω, material points have position

x = χ(X) = r+ uses + (y + uy)ey + ηen + µX3e3 . (1)

Here, χ : Ω0 → Ω is the deformation mapping, r = r(s) is
the space curve formed by the convecting X1-coordinate
line (for X2 = X3 = 0; r,s = es), e3 is the surface
normal acting through the thickness of the membrane,
and µ is the principle stretch along e3. The surface nor-
mal is computed as e3 = es

′ × ey
′/||es′ × ey

′||, where
es

′ = ∂χ/∂s and ey
′ = ∂χ/∂y are the covarient bases

that span the tangent plane at each point on the mid-
plane S ′ = {x ∈ Ω : X3 = 0}. The gradient of the
deformation mapping F = ∇χ is used to determine the
strain energy density Ψ = Ψ(s, y) and Jacobian determi-
nant J = det(F) of the membrane.
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FIG. 2. Solution with Φ = 0 for the following parameters: ℓ
= 2 cm, w = 1 cm, H = 130 µm, E = 170 kPa, C1 = E/6,
ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012 F/m, Ef = 1 MPa, wf = 1
cm, hf = 1.3 mm, λs = 2, and λy = 1.

As with other studies of DEA electro-elastostatics,
the dielectric is treated it as an incompressible Neo-
Hookean solid with coefficient of elasticity C1.26,28 There-
fore, Ψ = C1(IB − 3), where IB = tr(B) is the first
invariant of the Left Cauchy-Green deformation ten-
sor B = FF⊤. In general, the Lagrangian gradient
∇L = {∂/∂Xi}Ei should be used to calculate F, i.e.
∇χ = χ ⊗ ∇L. However, it is instead more convenient
to take the gradient w.r.t. the operator ∇ = R∇L,
where R = es ⊗ E1 + ey ⊗ E2 + en ⊗ E3 and {X1, X2}
are replaced with {s/λs, y/λy}. This is admissible since

F̂ := χ⊗∇ = FR⊤ ⇒ F̂F̂⊤ ≡ B and det(F̂) ≡ J . Since
the membrane is incompressible, the condition J = 1 is
used to solve for µ:

µ ≈
1

λsλy
√

η2,s + (1− κη)2(1 + η2,y)
. (2)
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convects with the plane of the 
bending frame 

s es 

en 

φ

η = η(s,y)en 

us = uy = η= 0 ∀X ∈∂S

es = ex cosφ+ ey sinφ

en = −ex sinφ+ ey cosφ

κ =
dφ
ds

Membrane Deformation: 

Frame Deflection: 

u = u(s,y) = uses + uyey +ηen
“Dirilichet” Boundary Conditions: 



Modeling is challenging because we must simultaneously examine the deformation 
of both the frame and the membrane.  
 
Use Principle of Minimum Potential:    



L0

Frame will bend if 
prestretch λ0 is greater 
than critical buckling 
load. 

λs = ℓ L0 λy = w W0



Prestretch Dielectric 

3

Substituting this solution into the expression forW yields

Ψ = C1

{

λs
2
[

(η,s + κus)
2 + (1 + us,s − κη)2 + u2

y,s

]

+λy
2
[

(1 + uy,y)
2 + η2,y + u2

s,y

]

+
1

λs
2λy

2
[

η2,s + (1 − κη)2(1 + η2,y)
] − 3

}

.(3)

The steps used to obtain µ and W are presented in the
Supplementary Information.
The shape of the DEA at static equilibrium is deter-

mined by minimizing the total potential energy of the
system is Π w.r.t. kinematically-admissible variations in
α and u. The potential is composed of energy contribu-
tions from elastic strain (Ψ), electrical enthalpy (Γ), and
the bending energy of the frame (U):

Π =

∫

Ω0

Ψ dV +

∫

Ω

Γ dv +

∫

F

U dA

=

∫ ℓ/2

−ℓ/2

∫ w/2

−w/2
L dyds+

∫ ℓ/2

−ℓ/2

1

2
Dκ2 ds , (4)

where L = (Ψ + Γ)H/λsλy is the Lagrangian density
and D = Efwfh3

f/12 is the flexural rigidity of the frame.
For a voltage drop Φ and electric permittivity ϵ,

Γ = −
1

2
ϵ

(

Φ

µH

)2

. (5)

At static equilibrium, Π must be minimized w.r.t. κ, η,
us, and uy. This implies that each function ϕ(s, y) ∈
{η, us, uy} must satisfy the Euler-Lagrange equation
Lϕ − (∂L /∂ϕ,s),s − (∂L /∂ϕ,y),y = 0 subject to the
Dirichlet boundary condition ϕ = 0 on S ′. The Euler-
Lagrange equations can be expressed as the following sys-
tem of elliptic PDEs:

−∇̃ · (c1∇̃η) + a1η = f1

−∇̃ · (c2∇̃us) + a2us = f2

−∇̃ · (c3∇̃uy) + a3uy = f3 , (6)

where ∇̃ = (∂/∂s)es + (∂/∂y)ey and

c1 =

{

λs
2
(

1− λy
2µ4

)

−
λsλyϵΦ2

2C1H

}

es ⊗ es

+
{

λy
2
(

1− λs
2µ4(1− κη)2

)

−
λsλyϵΦ2

2C1H
(1− κη)2

}

ey ⊗ ey

c2 = c3 = λs
2
es ⊗ es + λy

2
ey ⊗ ey

a1 = λs
2κ2

{

1− λy
2µ4(1 + η,y)

2
}

−
λsλyϵΦ2

2C1H
κ2(1 + η2,y)

a2 = λs
2κ2

a3 = 0
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FIG. 3. Plot of frame bending angle φ versus Φ for the same
parameters as in Fig. 2.

f1 = λs
2κ

{

1 + 2us,s − λy
2µ4(1 + η,y)

2
}

+λs
2κ,sus −

λsλyϵΦ2

2C1H
κ(1 + η2,y)

f2 = −λs
2(κ,sη + 2κη,s)

f3 = 0 .

Together with the boundary conditions, this implies uy =
0 ∀x ∈ S ′. This leaves a system of PDEs that must be
solved only for η(s, y) and us(s, y).

A numerical solution to the elliptic BVP is obtained
in MATLAB R2015a using the pdenonlin function. This
solver applies a damped Gauss-Newton iteration algo-
rithm to the finite element matrices generated for a tri-
angular mesh. Let ℓ = 2 cm, w = 1 cm, H = 130 µm, E
= 170 kPa, C1 = E/6, ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012

F/m, Ef = 1 MPa, wf = 1 cm, hf = 1.3 mm, λs =
2, and λy = 1. The stable shape of the DEA at static
equilibrium is shown in Fig. 2 for Φ = 0 and a plot of
ψ = αℓ/π versus Φ is presented in Fig. 3. The latter
shows significant deflection when up to 10 kV of voltage
bias is applied. Such large deflections is attributed to the
proximity of the DEA to an elastostatic bifurcation in-
stability. At this instability, small changes in membrane
stretch can lead to large changes in frame bending an-
gle. This condition is similar to the elastic instability
in an Euler column and corresponds to the bifurcation
shift shown in Fig. 4. It is clear from the plot that the
change ∆ψ under applied voltage is greatest near this
bifurcation.

To better understand the influence of DEA design pa-
rameters on electro-flexural response, a scaling law is
established based on an analytic approximation to the
governing BVP. Of particular interest is the special case
when λy = 1. Noting that us ≈ 0 and µ ≈ 1/λsλy, the
governing equations simplify to the following Helmholtz
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Elastic strain energy density: 

3

Substituting this solution into the expression forW yields

Ψ = C1

{

λs
2
[

(η,s + κus)
2 + (1 + us,s − κη)2 + u2

y,s

]

+λy
2
[

(1 + uy,y)
2 + η2,y + u2

s,y

]

+
1

λs
2λy

2
[

η2,s + (1 − κη)2(1 + η2,y)
] − 3

}

.(3)

The steps used to obtain µ and W are presented in the
Supplementary Information.
The shape of the DEA at static equilibrium is deter-

mined by minimizing the total potential energy of the
system is Π w.r.t. kinematically-admissible variations in
α and u. The potential is composed of energy contribu-
tions from elastic strain (Ψ), electrical enthalpy (Γ), and
the bending energy of the frame (U):

Π =

∫

Ω0

Ψ dV +

∫

Ω

Γ dv +

∫

F

U dA

=

∫ ℓ/2

−ℓ/2

∫ w/2

−w/2
L dyds+

∫ ℓ/2

−ℓ/2

1

2
Dκ2 ds , (4)

where L = (Ψ + Γ)H/λsλy is the Lagrangian density
and D = Efwfh3

f/12 is the flexural rigidity of the frame.
For a voltage drop Φ and electric permittivity ϵ,

Γ = −
1

2
ϵ

(

Φ

µH

)2

. (5)

At static equilibrium, Π must be minimized w.r.t. κ, η,
us, and uy. This implies that each function ϕ(s, y) ∈
{η, us, uy} must satisfy the Euler-Lagrange equation
Lϕ − (∂L /∂ϕ,s),s − (∂L /∂ϕ,y),y = 0 subject to the
Dirichlet boundary condition ϕ = 0 on S ′. The Euler-
Lagrange equations can be expressed as the following sys-
tem of elliptic PDEs:

−∇̃ · (c1∇̃η) + a1η = f1

−∇̃ · (c2∇̃us) + a2us = f2

−∇̃ · (c3∇̃uy) + a3uy = f3 , (6)

where ∇̃ = (∂/∂s)es + (∂/∂y)ey and

c1 =

{

λs
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(
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2µ4
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−
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2C1H

}
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+
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FIG. 3. Plot of frame bending angle φ versus Φ for the same
parameters as in Fig. 2.

f1 = λs
2κ

{

1 + 2us,s − λy
2µ4(1 + η,y)

2
}

+λs
2κ,sus −

λsλyϵΦ2

2C1H
κ(1 + η2,y)

f2 = −λs
2(κ,sη + 2κη,s)

f3 = 0 .

Together with the boundary conditions, this implies uy =
0 ∀x ∈ S ′. This leaves a system of PDEs that must be
solved only for η(s, y) and us(s, y).

A numerical solution to the elliptic BVP is obtained
in MATLAB R2015a using the pdenonlin function. This
solver applies a damped Gauss-Newton iteration algo-
rithm to the finite element matrices generated for a tri-
angular mesh. Let ℓ = 2 cm, w = 1 cm, H = 130 µm, E
= 170 kPa, C1 = E/6, ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012

F/m, Ef = 1 MPa, wf = 1 cm, hf = 1.3 mm, λs =
2, and λy = 1. The stable shape of the DEA at static
equilibrium is shown in Fig. 2 for Φ = 0 and a plot of
ψ = αℓ/π versus Φ is presented in Fig. 3. The latter
shows significant deflection when up to 10 kV of voltage
bias is applied. Such large deflections is attributed to the
proximity of the DEA to an elastostatic bifurcation in-
stability. At this instability, small changes in membrane
stretch can lead to large changes in frame bending an-
gle. This condition is similar to the elastic instability
in an Euler column and corresponds to the bifurcation
shift shown in Fig. 4. It is clear from the plot that the
change ∆ψ under applied voltage is greatest near this
bifurcation.

To better understand the influence of DEA design pa-
rameters on electro-flexural response, a scaling law is
established based on an analytic approximation to the
governing BVP. Of particular interest is the special case
when λy = 1. Noting that us ≈ 0 and µ ≈ 1/λsλy, the
governing equations simplify to the following Helmholtz

Electrical enthalpy: 

3

Substituting this solution into the expression forW yields

Ψ = C1

{

λs
2
[

(η,s + κus)
2 + (1 + us,s − κη)2 + u2

y,s

]

+λy
2
[

(1 + uy,y)
2 + η2,y + u2

s,y

]

+
1

λs
2λy

2
[

η2,s + (1 − κη)2(1 + η2,y)
] − 3

}

.(3)

The steps used to obtain µ and W are presented in the
Supplementary Information.
The shape of the DEA at static equilibrium is deter-

mined by minimizing the total potential energy of the
system is Π w.r.t. kinematically-admissible variations in
α and u. The potential is composed of energy contribu-
tions from elastic strain (Ψ), electrical enthalpy (Γ), and
the bending energy of the frame (U):

Π =

∫
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Ψ dV +

∫
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where L = (Ψ + Γ)H/λsλy is the Lagrangian density
and D = Efwfh3

f/12 is the flexural rigidity of the frame.
For a voltage drop Φ and electric permittivity ϵ,
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At static equilibrium, Π must be minimized w.r.t. κ, η,
us, and uy. This implies that each function ϕ(s, y) ∈
{η, us, uy} must satisfy the Euler-Lagrange equation
Lϕ − (∂L /∂ϕ,s),s − (∂L /∂ϕ,y),y = 0 subject to the
Dirichlet boundary condition ϕ = 0 on S ′. The Euler-
Lagrange equations can be expressed as the following sys-
tem of elliptic PDEs:

−∇̃ · (c1∇̃η) + a1η = f1

−∇̃ · (c2∇̃us) + a2us = f2

−∇̃ · (c3∇̃uy) + a3uy = f3 , (6)

where ∇̃ = (∂/∂s)es + (∂/∂y)ey and
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FIG. 3. Plot of frame bending angle φ versus Φ for the same
parameters as in Fig. 2.
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f3 = 0 .

Together with the boundary conditions, this implies uy =
0 ∀x ∈ S ′. This leaves a system of PDEs that must be
solved only for η(s, y) and us(s, y).

A numerical solution to the elliptic BVP is obtained
in MATLAB R2015a using the pdenonlin function. This
solver applies a damped Gauss-Newton iteration algo-
rithm to the finite element matrices generated for a tri-
angular mesh. Let ℓ = 2 cm, w = 1 cm, H = 130 µm, E
= 170 kPa, C1 = E/6, ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012

F/m, Ef = 1 MPa, wf = 1 cm, hf = 1.3 mm, λs =
2, and λy = 1. The stable shape of the DEA at static
equilibrium is shown in Fig. 2 for Φ = 0 and a plot of
ψ = αℓ/π versus Φ is presented in Fig. 3. The latter
shows significant deflection when up to 10 kV of voltage
bias is applied. Such large deflections is attributed to the
proximity of the DEA to an elastostatic bifurcation in-
stability. At this instability, small changes in membrane
stretch can lead to large changes in frame bending an-
gle. This condition is similar to the elastic instability
in an Euler column and corresponds to the bifurcation
shift shown in Fig. 4. It is clear from the plot that the
change ∆ψ under applied voltage is greatest near this
bifurcation.

To better understand the influence of DEA design pa-
rameters on electro-flexural response, a scaling law is
established based on an analytic approximation to the
governing BVP. Of particular interest is the special case
when λy = 1. Noting that us ≈ 0 and µ ≈ 1/λsλy, the
governing equations simplify to the following Helmholtz
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The steps used to obtain µ and W are presented in the
Supplementary Information.
The shape of the DEA at static equilibrium is deter-

mined by minimizing the total potential energy of the
system is Π w.r.t. kinematically-admissible variations in
α and u. The potential is composed of energy contribu-
tions from elastic strain (Ψ), electrical enthalpy (Γ), and
the bending energy of the frame (U):
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where L = (Ψ + Γ)H/λsλy is the Lagrangian density
and D = Efwfh3

f/12 is the flexural rigidity of the frame.
For a voltage drop Φ and electric permittivity ϵ,
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At static equilibrium, Π must be minimized w.r.t. κ, η,
us, and uy. This implies that each function ϕ(s, y) ∈
{η, us, uy} must satisfy the Euler-Lagrange equation
Lϕ − (∂L /∂ϕ,s),s − (∂L /∂ϕ,y),y = 0 subject to the
Dirichlet boundary condition ϕ = 0 on S ′. The Euler-
Lagrange equations can be expressed as the following sys-
tem of elliptic PDEs:

−∇̃ · (c1∇̃η) + a1η = f1

−∇̃ · (c2∇̃us) + a2us = f2
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FIG. 3. Plot of frame bending angle φ versus Φ for the same
parameters as in Fig. 2.
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Together with the boundary conditions, this implies uy =
0 ∀x ∈ S ′. This leaves a system of PDEs that must be
solved only for η(s, y) and us(s, y).

A numerical solution to the elliptic BVP is obtained
in MATLAB R2015a using the pdenonlin function. This
solver applies a damped Gauss-Newton iteration algo-
rithm to the finite element matrices generated for a tri-
angular mesh. Let ℓ = 2 cm, w = 1 cm, H = 130 µm, E
= 170 kPa, C1 = E/6, ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012

F/m, Ef = 1 MPa, wf = 1 cm, hf = 1.3 mm, λs =
2, and λy = 1. The stable shape of the DEA at static
equilibrium is shown in Fig. 2 for Φ = 0 and a plot of
ψ = αℓ/π versus Φ is presented in Fig. 3. The latter
shows significant deflection when up to 10 kV of voltage
bias is applied. Such large deflections is attributed to the
proximity of the DEA to an elastostatic bifurcation in-
stability. At this instability, small changes in membrane
stretch can lead to large changes in frame bending an-
gle. This condition is similar to the elastic instability
in an Euler column and corresponds to the bifurcation
shift shown in Fig. 4. It is clear from the plot that the
change ∆ψ under applied voltage is greatest near this
bifurcation.

To better understand the influence of DEA design pa-
rameters on electro-flexural response, a scaling law is
established based on an analytic approximation to the
governing BVP. Of particular interest is the special case
when λy = 1. Noting that us ≈ 0 and µ ≈ 1/λsλy, the
governing equations simplify to the following Helmholtz
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FIG. 1. Electromechanical response of flexure-mode DEA
with polyacrylate frame and EGaIn-coated dielectric.

and X3 ∈ [−H/2, H/2]. The frame is also naturally flat
and rectangular, with an interior rectangular opening of
width w and length ℓ in the principal E1 and E2 direc-
tions, respectively. The border of the frame has a thick-
ness hf , width wf/2 in the E2 direction, and Young’s
modulus Ef . The exposed surfaces of the membrane are
coated with electrodes that remain intact (and electri-
cally conductive) during stretching (e.g. carbon grease
or liquid metal).
In order to bond the edges of the membrane to the

frame interior, the membrane must be given a bi-axial
prestretch {λs = ℓ/L,λy = w/W}. If the membrane
tension is sufficiently large, the frame will bend in the
E1 − E3 plane. Let S denote a ruled surface that is ev-
erywhere tangent to the bending frame and define the
convecting surface coordinates s = λsX1 ∈ [ℓ/2, ℓ/2] and
y = λyX2 ∈ [w/2, w/2] along the length and width,
respectively. The normalized tangent vectors are es =
cosφE1 + sinφE3 and ey = E2, where κ = dφ/ds is
the frame curvature and φ = φ(s) is the bending angle.
Since the frame is primarily loaded by axial tension from
the membrane, It will be assumed that κ has the form
κ = α cos(πs/ℓ). This kinematic restriction represents
a simplifying approximation that is based on the post-
buckling solution of an Euler column and is consistent
with experimental observations .
Let u = u(s, y) = uses + uyey + ηen denote the dis-

placement of the membrane’s midplane w.r.t. S, where
en = es×ey = − sinφE1+cosφE3 is the unit normal. In
the current placement Ω, material points have position

x = χ(X) = r+ uses + (y + uy)ey + ηen + µX3e3 . (1)

Here, χ : Ω0 → Ω is the deformation mapping, r = r(s) is
the space curve formed by the convecting X1-coordinate
line (for X2 = X3 = 0; r,s = es), e3 is the surface
normal acting through the thickness of the membrane,
and µ is the principle stretch along e3. The surface nor-
mal is computed as e3 = es

′ × ey
′/||es′ × ey

′||, where
es

′ = ∂χ/∂s and ey
′ = ∂χ/∂y are the covarient bases

that span the tangent plane at each point on the mid-
plane S ′ = {x ∈ Ω : X3 = 0}. The gradient of the
deformation mapping F = ∇χ is used to determine the
strain energy density Ψ = Ψ(s, y) and Jacobian determi-
nant J = det(F) of the membrane.
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FIG. 2. Solution with Φ = 0 for the following parameters: ℓ
= 2 cm, w = 1 cm, H = 130 µm, E = 170 kPa, C1 = E/6,
ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012 F/m, Ef = 1 MPa, wf = 1
cm, hf = 1.3 mm, λs = 2, and λy = 1.

As with other studies of DEA electro-elastostatics,
the dielectric is treated it as an incompressible Neo-
Hookean solid with coefficient of elasticity C1.26,28 There-
fore, Ψ = C1(IB − 3), where IB = tr(B) is the first
invariant of the Left Cauchy-Green deformation ten-
sor B = FF⊤. In general, the Lagrangian gradient
∇L = {∂/∂Xi}Ei should be used to calculate F, i.e.
∇χ = χ ⊗ ∇L. However, it is instead more convenient
to take the gradient w.r.t. the operator ∇ = R∇L,
where R = es ⊗ E1 + ey ⊗ E2 + en ⊗ E3 and {X1, X2}
are replaced with {s/λs, y/λy}. This is admissible since

F̂ := χ⊗∇ = FR⊤ ⇒ F̂F̂⊤ ≡ B and det(F̂) ≡ J . Since
the membrane is incompressible, the condition J = 1 is
used to solve for µ:

µ ≈
1

λsλy
√

η2,s + (1− κη)2(1 + η2,y)
. (2)Stretch through thickness: 
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Substituting this solution into the expression forW yields

Ψ = C1

{
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2 + (1 + us,s − κη)2 + u2

y,s

]
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s,y

]

+
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η2,s + (1 − κη)2(1 + η2,y)
] − 3

}

.(3)

The steps used to obtain µ and W are presented in the
Supplementary Information.
The shape of the DEA at static equilibrium is deter-

mined by minimizing the total potential energy of the
system is Π w.r.t. kinematically-admissible variations in
α and u. The potential is composed of energy contribu-
tions from elastic strain (Ψ), electrical enthalpy (Γ), and
the bending energy of the frame (U):

Π =

∫

Ω0

Ψ dV +

∫

Ω

Γ dv +
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F

U dA

=
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where L = (Ψ + Γ)H/λsλy is the Lagrangian density
and D = Efwfh3

f/12 is the flexural rigidity of the frame.
For a voltage drop Φ and electric permittivity ϵ,
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2
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(

Φ

µH
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. (5)

At static equilibrium, Π must be minimized w.r.t. κ, η,
us, and uy. This implies that each function ϕ(s, y) ∈
{η, us, uy} must satisfy the Euler-Lagrange equation
Lϕ − (∂L /∂ϕ,s),s − (∂L /∂ϕ,y),y = 0 subject to the
Dirichlet boundary condition ϕ = 0 on S ′. The Euler-
Lagrange equations can be expressed as the following sys-
tem of elliptic PDEs:

−∇̃ · (c1∇̃η) + a1η = f1

−∇̃ · (c2∇̃us) + a2us = f2

−∇̃ · (c3∇̃uy) + a3uy = f3 , (6)

where ∇̃ = (∂/∂s)es + (∂/∂y)ey and
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FIG. 3. Plot of frame bending angle φ versus Φ for the same
parameters as in Fig. 2.
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f2 = −λs
2(κ,sη + 2κη,s)

f3 = 0 .

Together with the boundary conditions, this implies uy =
0 ∀x ∈ S ′. This leaves a system of PDEs that must be
solved only for η(s, y) and us(s, y).

A numerical solution to the elliptic BVP is obtained
in MATLAB R2015a using the pdenonlin function. This
solver applies a damped Gauss-Newton iteration algo-
rithm to the finite element matrices generated for a tri-
angular mesh. Let ℓ = 2 cm, w = 1 cm, H = 130 µm, E
= 170 kPa, C1 = E/6, ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012

F/m, Ef = 1 MPa, wf = 1 cm, hf = 1.3 mm, λs =
2, and λy = 1. The stable shape of the DEA at static
equilibrium is shown in Fig. 2 for Φ = 0 and a plot of
ψ = αℓ/π versus Φ is presented in Fig. 3. The latter
shows significant deflection when up to 10 kV of voltage
bias is applied. Such large deflections is attributed to the
proximity of the DEA to an elastostatic bifurcation in-
stability. At this instability, small changes in membrane
stretch can lead to large changes in frame bending an-
gle. This condition is similar to the elastic instability
in an Euler column and corresponds to the bifurcation
shift shown in Fig. 4. It is clear from the plot that the
change ∆ψ under applied voltage is greatest near this
bifurcation.

To better understand the influence of DEA design pa-
rameters on electro-flexural response, a scaling law is
established based on an analytic approximation to the
governing BVP. Of particular interest is the special case
when λy = 1. Noting that us ≈ 0 and µ ≈ 1/λsλy, the
governing equations simplify to the following Helmholtz

Bending  
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Substituting this solution into the expression forW yields
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The steps used to obtain µ and W are presented in the
Supplementary Information.
The shape of the DEA at static equilibrium is deter-

mined by minimizing the total potential energy of the
system is Π w.r.t. kinematically-admissible variations in
α and u. The potential is composed of energy contribu-
tions from elastic strain (Ψ), electrical enthalpy (Γ), and
the bending energy of the frame (U):

Π =
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where L = (Ψ + Γ)H/λsλy is the Lagrangian density
and D = Efwfh3

f/12 is the flexural rigidity of the frame.
For a voltage drop Φ and electric permittivity ϵ,
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At static equilibrium, Π must be minimized w.r.t. κ, η,
us, and uy. This implies that each function ϕ(s, y) ∈
{η, us, uy} must satisfy the Euler-Lagrange equation
Lϕ − (∂L /∂ϕ,s),s − (∂L /∂ϕ,y),y = 0 subject to the
Dirichlet boundary condition ϕ = 0 on S ′. The Euler-
Lagrange equations can be expressed as the following sys-
tem of elliptic PDEs:

−∇̃ · (c1∇̃η) + a1η = f1

−∇̃ · (c2∇̃us) + a2us = f2

−∇̃ · (c3∇̃uy) + a3uy = f3 , (6)
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FIG. 3. Plot of frame bending angle φ versus Φ for the same
parameters as in Fig. 2.
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Together with the boundary conditions, this implies uy =
0 ∀x ∈ S ′. This leaves a system of PDEs that must be
solved only for η(s, y) and us(s, y).

A numerical solution to the elliptic BVP is obtained
in MATLAB R2015a using the pdenonlin function. This
solver applies a damped Gauss-Newton iteration algo-
rithm to the finite element matrices generated for a tri-
angular mesh. Let ℓ = 2 cm, w = 1 cm, H = 130 µm, E
= 170 kPa, C1 = E/6, ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012

F/m, Ef = 1 MPa, wf = 1 cm, hf = 1.3 mm, λs =
2, and λy = 1. The stable shape of the DEA at static
equilibrium is shown in Fig. 2 for Φ = 0 and a plot of
ψ = αℓ/π versus Φ is presented in Fig. 3. The latter
shows significant deflection when up to 10 kV of voltage
bias is applied. Such large deflections is attributed to the
proximity of the DEA to an elastostatic bifurcation in-
stability. At this instability, small changes in membrane
stretch can lead to large changes in frame bending an-
gle. This condition is similar to the elastic instability
in an Euler column and corresponds to the bifurcation
shift shown in Fig. 4. It is clear from the plot that the
change ∆ψ under applied voltage is greatest near this
bifurcation.

To better understand the influence of DEA design pa-
rameters on electro-flexural response, a scaling law is
established based on an analytic approximation to the
governing BVP. Of particular interest is the special case
when λy = 1. Noting that us ≈ 0 and µ ≈ 1/λsλy, the
governing equations simplify to the following Helmholtz
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Substituting this solution into the expression forW yields
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The steps used to obtain µ and W are presented in the
Supplementary Information.
The shape of the DEA at static equilibrium is deter-

mined by minimizing the total potential energy of the
system is Π w.r.t. kinematically-admissible variations in
α and u. The potential is composed of energy contribu-
tions from elastic strain (Ψ), electrical enthalpy (Γ), and
the bending energy of the frame (U):

Π =
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where L = (Ψ + Γ)H/λsλy is the Lagrangian density
and D = Efwfh3

f/12 is the flexural rigidity of the frame.
For a voltage drop Φ and electric permittivity ϵ,

Γ = −
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. (5)

At static equilibrium, Π must be minimized w.r.t. κ, η,
us, and uy. This implies that each function ϕ(s, y) ∈
{η, us, uy} must satisfy the Euler-Lagrange equation
Lϕ − (∂L /∂ϕ,s),s − (∂L /∂ϕ,y),y = 0 subject to the
Dirichlet boundary condition ϕ = 0 on S ′. The Euler-
Lagrange equations can be expressed as the following sys-
tem of elliptic PDEs:

−∇̃ · (c1∇̃η) + a1η = f1

−∇̃ · (c2∇̃us) + a2us = f2

−∇̃ · (c3∇̃uy) + a3uy = f3 , (6)

where ∇̃ = (∂/∂s)es + (∂/∂y)ey and
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FIG. 3. Plot of frame bending angle φ versus Φ for the same
parameters as in Fig. 2.
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f3 = 0 .

Together with the boundary conditions, this implies uy =
0 ∀x ∈ S ′. This leaves a system of PDEs that must be
solved only for η(s, y) and us(s, y).

A numerical solution to the elliptic BVP is obtained
in MATLAB R2015a using the pdenonlin function. This
solver applies a damped Gauss-Newton iteration algo-
rithm to the finite element matrices generated for a tri-
angular mesh. Let ℓ = 2 cm, w = 1 cm, H = 130 µm, E
= 170 kPa, C1 = E/6, ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012

F/m, Ef = 1 MPa, wf = 1 cm, hf = 1.3 mm, λs =
2, and λy = 1. The stable shape of the DEA at static
equilibrium is shown in Fig. 2 for Φ = 0 and a plot of
ψ = αℓ/π versus Φ is presented in Fig. 3. The latter
shows significant deflection when up to 10 kV of voltage
bias is applied. Such large deflections is attributed to the
proximity of the DEA to an elastostatic bifurcation in-
stability. At this instability, small changes in membrane
stretch can lead to large changes in frame bending an-
gle. This condition is similar to the elastic instability
in an Euler column and corresponds to the bifurcation
shift shown in Fig. 4. It is clear from the plot that the
change ∆ψ under applied voltage is greatest near this
bifurcation.

To better understand the influence of DEA design pa-
rameters on electro-flexural response, a scaling law is
established based on an analytic approximation to the
governing BVP. Of particular interest is the special case
when λy = 1. Noting that us ≈ 0 and µ ≈ 1/λsλy, the
governing equations simplify to the following Helmholtz
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A condition for Π to be minimized is that each function 
Must minimize the “Euler-Lagrange equations”:  
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The steps used to obtain µ and W are presented in the
Supplementary Information.
The shape of the DEA at static equilibrium is deter-

mined by minimizing the total potential energy of the
system is Π w.r.t. kinematically-admissible variations in
α and u. The potential is composed of energy contribu-
tions from elastic strain (Ψ), electrical enthalpy (Γ), and
the bending energy of the frame (U):
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and D = Efwfh3

f/12 is the flexural rigidity of the frame.
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At static equilibrium, Π must be minimized w.r.t. κ, η,
us, and uy. This implies that each function ϕ(s, y) ∈
{η, us, uy} must satisfy the Euler-Lagrange equation
Lϕ − (∂L /∂ϕ,s),s − (∂L /∂ϕ,y),y = 0 subject to the
Dirichlet boundary condition ϕ = 0 on S ′. The Euler-
Lagrange equations can be expressed as the following sys-
tem of elliptic PDEs:

−∇̃ · (c1∇̃η) + a1η = f1

−∇̃ · (c2∇̃us) + a2us = f2

−∇̃ · (c3∇̃uy) + a3uy = f3 , (6)

where ∇̃ = (∂/∂s)es + (∂/∂y)ey and
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FIG. 3. Plot of frame bending angle φ versus Φ for the same
parameters as in Fig. 2.
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Together with the boundary conditions, this implies uy =
0 ∀x ∈ S ′. This leaves a system of PDEs that must be
solved only for η(s, y) and us(s, y).

A numerical solution to the elliptic BVP is obtained
in MATLAB R2015a using the pdenonlin function. This
solver applies a damped Gauss-Newton iteration algo-
rithm to the finite element matrices generated for a tri-
angular mesh. Let ℓ = 2 cm, w = 1 cm, H = 130 µm, E
= 170 kPa, C1 = E/6, ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012

F/m, Ef = 1 MPa, wf = 1 cm, hf = 1.3 mm, λs =
2, and λy = 1. The stable shape of the DEA at static
equilibrium is shown in Fig. 2 for Φ = 0 and a plot of
ψ = αℓ/π versus Φ is presented in Fig. 3. The latter
shows significant deflection when up to 10 kV of voltage
bias is applied. Such large deflections is attributed to the
proximity of the DEA to an elastostatic bifurcation in-
stability. At this instability, small changes in membrane
stretch can lead to large changes in frame bending an-
gle. This condition is similar to the elastic instability
in an Euler column and corresponds to the bifurcation
shift shown in Fig. 4. It is clear from the plot that the
change ∆ψ under applied voltage is greatest near this
bifurcation.

To better understand the influence of DEA design pa-
rameters on electro-flexural response, a scaling law is
established based on an analytic approximation to the
governing BVP. Of particular interest is the special case
when λy = 1. Noting that us ≈ 0 and µ ≈ 1/λsλy, the
governing equations simplify to the following Helmholtz
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Substituting this solution into the expression forW yields
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+
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The steps used to obtain µ and W are presented in the
Supplementary Information.
The shape of the DEA at static equilibrium is deter-

mined by minimizing the total potential energy of the
system is Π w.r.t. kinematically-admissible variations in
α and u. The potential is composed of energy contribu-
tions from elastic strain (Ψ), electrical enthalpy (Γ), and
the bending energy of the frame (U):

Π =

∫

Ω0

Ψ dV +
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Ω
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=
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where L = (Ψ + Γ)H/λsλy is the Lagrangian density
and D = Efwfh3

f/12 is the flexural rigidity of the frame.
For a voltage drop Φ and electric permittivity ϵ,

Γ = −
1

2
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(
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µH
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. (5)

At static equilibrium, Π must be minimized w.r.t. κ, η,
us, and uy. This implies that each function ϕ(s, y) ∈
{η, us, uy} must satisfy the Euler-Lagrange equation
Lϕ − (∂L /∂ϕ,s),s − (∂L /∂ϕ,y),y = 0 subject to the
Dirichlet boundary condition ϕ = 0 on S ′. The Euler-
Lagrange equations can be expressed as the following sys-
tem of elliptic PDEs:

−∇̃ · (c1∇̃η) + a1η = f1

−∇̃ · (c2∇̃us) + a2us = f2

−∇̃ · (c3∇̃uy) + a3uy = f3 , (6)

where ∇̃ = (∂/∂s)es + (∂/∂y)ey and
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FIG. 3. Plot of frame bending angle φ versus Φ for the same
parameters as in Fig. 2.
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Together with the boundary conditions, this implies uy =
0 ∀x ∈ S ′. This leaves a system of PDEs that must be
solved only for η(s, y) and us(s, y).

A numerical solution to the elliptic BVP is obtained
in MATLAB R2015a using the pdenonlin function. This
solver applies a damped Gauss-Newton iteration algo-
rithm to the finite element matrices generated for a tri-
angular mesh. Let ℓ = 2 cm, w = 1 cm, H = 130 µm, E
= 170 kPa, C1 = E/6, ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012

F/m, Ef = 1 MPa, wf = 1 cm, hf = 1.3 mm, λs =
2, and λy = 1. The stable shape of the DEA at static
equilibrium is shown in Fig. 2 for Φ = 0 and a plot of
ψ = αℓ/π versus Φ is presented in Fig. 3. The latter
shows significant deflection when up to 10 kV of voltage
bias is applied. Such large deflections is attributed to the
proximity of the DEA to an elastostatic bifurcation in-
stability. At this instability, small changes in membrane
stretch can lead to large changes in frame bending an-
gle. This condition is similar to the elastic instability
in an Euler column and corresponds to the bifurcation
shift shown in Fig. 4. It is clear from the plot that the
change ∆ψ under applied voltage is greatest near this
bifurcation.

To better understand the influence of DEA design pa-
rameters on electro-flexural response, a scaling law is
established based on an analytic approximation to the
governing BVP. Of particular interest is the special case
when λy = 1. Noting that us ≈ 0 and µ ≈ 1/λsλy, the
governing equations simplify to the following Helmholtz

3

Substituting this solution into the expression forW yields
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]
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]

+
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η2,s + (1 − κη)2(1 + η2,y)
] − 3
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.(3)

The steps used to obtain µ and W are presented in the
Supplementary Information.
The shape of the DEA at static equilibrium is deter-

mined by minimizing the total potential energy of the
system is Π w.r.t. kinematically-admissible variations in
α and u. The potential is composed of energy contribu-
tions from elastic strain (Ψ), electrical enthalpy (Γ), and
the bending energy of the frame (U):

Π =

∫

Ω0

Ψ dV +

∫

Ω

Γ dv +

∫

F

U dA

=

∫ ℓ/2
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where L = (Ψ + Γ)H/λsλy is the Lagrangian density
and D = Efwfh3

f/12 is the flexural rigidity of the frame.
For a voltage drop Φ and electric permittivity ϵ,

Γ = −
1

2
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(
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µH
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. (5)

At static equilibrium, Π must be minimized w.r.t. κ, η,
us, and uy. This implies that each function ϕ(s, y) ∈
{η, us, uy} must satisfy the Euler-Lagrange equation
Lϕ − (∂L /∂ϕ,s),s − (∂L /∂ϕ,y),y = 0 subject to the
Dirichlet boundary condition ϕ = 0 on S ′. The Euler-
Lagrange equations can be expressed as the following sys-
tem of elliptic PDEs:

−∇̃ · (c1∇̃η) + a1η = f1

−∇̃ · (c2∇̃us) + a2us = f2

−∇̃ · (c3∇̃uy) + a3uy = f3 , (6)

where ∇̃ = (∂/∂s)es + (∂/∂y)ey and
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FIG. 3. Plot of frame bending angle φ versus Φ for the same
parameters as in Fig. 2.
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κ(1 + η2,y)

f2 = −λs
2(κ,sη + 2κη,s)

f3 = 0 .

Together with the boundary conditions, this implies uy =
0 ∀x ∈ S ′. This leaves a system of PDEs that must be
solved only for η(s, y) and us(s, y).

A numerical solution to the elliptic BVP is obtained
in MATLAB R2015a using the pdenonlin function. This
solver applies a damped Gauss-Newton iteration algo-
rithm to the finite element matrices generated for a tri-
angular mesh. Let ℓ = 2 cm, w = 1 cm, H = 130 µm, E
= 170 kPa, C1 = E/6, ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012

F/m, Ef = 1 MPa, wf = 1 cm, hf = 1.3 mm, λs =
2, and λy = 1. The stable shape of the DEA at static
equilibrium is shown in Fig. 2 for Φ = 0 and a plot of
ψ = αℓ/π versus Φ is presented in Fig. 3. The latter
shows significant deflection when up to 10 kV of voltage
bias is applied. Such large deflections is attributed to the
proximity of the DEA to an elastostatic bifurcation in-
stability. At this instability, small changes in membrane
stretch can lead to large changes in frame bending an-
gle. This condition is similar to the elastic instability
in an Euler column and corresponds to the bifurcation
shift shown in Fig. 4. It is clear from the plot that the
change ∆ψ under applied voltage is greatest near this
bifurcation.

To better understand the influence of DEA design pa-
rameters on electro-flexural response, a scaling law is
established based on an analytic approximation to the
governing BVP. Of particular interest is the special case
when λy = 1. Noting that us ≈ 0 and µ ≈ 1/λsλy, the
governing equations simplify to the following Helmholtz

ϕ = 0 ∀X ∈∂S

The proof of this is obtained using the “Calculus of Variations”. 
 
These PDEs are equivalent to the Newtonian equations for balancing 
internal stresses in the membrane (in the frame and membrane). 



Theoretical Model 

−∇⋅ c1∇η( )+ a1η= f1
−∇⋅ c2∇us( )+ a2us = f2

This implies uy = 0 and that η and us must satisfy  
the following system of “elliptic” PDEs: 
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The steps used to obtain µ and W are presented in the
Supplementary Information.
The shape of the DEA at static equilibrium is deter-

mined by minimizing the total potential energy of the
system is Π w.r.t. kinematically-admissible variations in
α and u. The potential is composed of energy contribu-
tions from elastic strain (Ψ), electrical enthalpy (Γ), and
the bending energy of the frame (U):

Π =
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where L = (Ψ + Γ)H/λsλy is the Lagrangian density
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f/12 is the flexural rigidity of the frame.
For a voltage drop Φ and electric permittivity ϵ,
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At static equilibrium, Π must be minimized w.r.t. κ, η,
us, and uy. This implies that each function ϕ(s, y) ∈
{η, us, uy} must satisfy the Euler-Lagrange equation
Lϕ − (∂L /∂ϕ,s),s − (∂L /∂ϕ,y),y = 0 subject to the
Dirichlet boundary condition ϕ = 0 on S ′. The Euler-
Lagrange equations can be expressed as the following sys-
tem of elliptic PDEs:

−∇̃ · (c1∇̃η) + a1η = f1

−∇̃ · (c2∇̃us) + a2us = f2

−∇̃ · (c3∇̃uy) + a3uy = f3 , (6)
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FIG. 3. Plot of frame bending angle φ versus Φ for the same
parameters as in Fig. 2.
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Together with the boundary conditions, this implies uy =
0 ∀x ∈ S ′. This leaves a system of PDEs that must be
solved only for η(s, y) and us(s, y).

A numerical solution to the elliptic BVP is obtained
in MATLAB R2015a using the pdenonlin function. This
solver applies a damped Gauss-Newton iteration algo-
rithm to the finite element matrices generated for a tri-
angular mesh. Let ℓ = 2 cm, w = 1 cm, H = 130 µm, E
= 170 kPa, C1 = E/6, ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012

F/m, Ef = 1 MPa, wf = 1 cm, hf = 1.3 mm, λs =
2, and λy = 1. The stable shape of the DEA at static
equilibrium is shown in Fig. 2 for Φ = 0 and a plot of
ψ = αℓ/π versus Φ is presented in Fig. 3. The latter
shows significant deflection when up to 10 kV of voltage
bias is applied. Such large deflections is attributed to the
proximity of the DEA to an elastostatic bifurcation in-
stability. At this instability, small changes in membrane
stretch can lead to large changes in frame bending an-
gle. This condition is similar to the elastic instability
in an Euler column and corresponds to the bifurcation
shift shown in Fig. 4. It is clear from the plot that the
change ∆ψ under applied voltage is greatest near this
bifurcation.

To better understand the influence of DEA design pa-
rameters on electro-flexural response, a scaling law is
established based on an analytic approximation to the
governing BVP. Of particular interest is the special case
when λy = 1. Noting that us ≈ 0 and µ ≈ 1/λsλy, the
governing equations simplify to the following Helmholtz
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Substituting this solution into the expression forW yields
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[
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[
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}

.(3)

The steps used to obtain µ and W are presented in the
Supplementary Information.
The shape of the DEA at static equilibrium is deter-

mined by minimizing the total potential energy of the
system is Π w.r.t. kinematically-admissible variations in
α and u. The potential is composed of energy contribu-
tions from elastic strain (Ψ), electrical enthalpy (Γ), and
the bending energy of the frame (U):

Π =
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where L = (Ψ + Γ)H/λsλy is the Lagrangian density
and D = Efwfh3

f/12 is the flexural rigidity of the frame.
For a voltage drop Φ and electric permittivity ϵ,
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. (5)

At static equilibrium, Π must be minimized w.r.t. κ, η,
us, and uy. This implies that each function ϕ(s, y) ∈
{η, us, uy} must satisfy the Euler-Lagrange equation
Lϕ − (∂L /∂ϕ,s),s − (∂L /∂ϕ,y),y = 0 subject to the
Dirichlet boundary condition ϕ = 0 on S ′. The Euler-
Lagrange equations can be expressed as the following sys-
tem of elliptic PDEs:

−∇̃ · (c1∇̃η) + a1η = f1

−∇̃ · (c2∇̃us) + a2us = f2

−∇̃ · (c3∇̃uy) + a3uy = f3 , (6)

where ∇̃ = (∂/∂s)es + (∂/∂y)ey and

c1 =

{

λs
2
(

1− λy
2µ4

)

−
λsλyϵΦ2

2C1H

}

es ⊗ es

+
{

λy
2
(

1− λs
2µ4(1− κη)2

)

−
λsλyϵΦ2

2C1H
(1− κη)2

}

ey ⊗ ey

c2 = c3 = λs
2
es ⊗ es + λy

2
ey ⊗ ey

a1 = λs
2κ2

{

1− λy
2µ4(1 + η,y)

2
}

−
λsλyϵΦ2
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FIG. 3. Plot of frame bending angle φ versus Φ for the same
parameters as in Fig. 2.
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Together with the boundary conditions, this implies uy =
0 ∀x ∈ S ′. This leaves a system of PDEs that must be
solved only for η(s, y) and us(s, y).

A numerical solution to the elliptic BVP is obtained
in MATLAB R2015a using the pdenonlin function. This
solver applies a damped Gauss-Newton iteration algo-
rithm to the finite element matrices generated for a tri-
angular mesh. Let ℓ = 2 cm, w = 1 cm, H = 130 µm, E
= 170 kPa, C1 = E/6, ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012

F/m, Ef = 1 MPa, wf = 1 cm, hf = 1.3 mm, λs =
2, and λy = 1. The stable shape of the DEA at static
equilibrium is shown in Fig. 2 for Φ = 0 and a plot of
ψ = αℓ/π versus Φ is presented in Fig. 3. The latter
shows significant deflection when up to 10 kV of voltage
bias is applied. Such large deflections is attributed to the
proximity of the DEA to an elastostatic bifurcation in-
stability. At this instability, small changes in membrane
stretch can lead to large changes in frame bending an-
gle. This condition is similar to the elastic instability
in an Euler column and corresponds to the bifurcation
shift shown in Fig. 4. It is clear from the plot that the
change ∆ψ under applied voltage is greatest near this
bifurcation.

To better understand the influence of DEA design pa-
rameters on electro-flexural response, a scaling law is
established based on an analytic approximation to the
governing BVP. Of particular interest is the special case
when λy = 1. Noting that us ≈ 0 and µ ≈ 1/λsλy, the
governing equations simplify to the following Helmholtz
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FIG. 3. Plot of frame bending angle φ versus Φ for the same
parameters as in Fig. 2.
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Together with the boundary conditions, this implies uy =
0 ∀x ∈ S ′. This leaves a system of PDEs that must be
solved only for η(s, y) and us(s, y).

A numerical solution to the elliptic BVP is obtained
in MATLAB R2015a using the pdenonlin function. This
solver applies a damped Gauss-Newton iteration algo-
rithm to the finite element matrices generated for a tri-
angular mesh. Let ℓ = 2 cm, w = 1 cm, H = 130 µm, E
= 170 kPa, C1 = E/6, ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012

F/m, Ef = 1 MPa, wf = 1 cm, hf = 1.3 mm, λs =
2, and λy = 1. The stable shape of the DEA at static
equilibrium is shown in Fig. 2 for Φ = 0 and a plot of
ψ = αℓ/π versus Φ is presented in Fig. 3. The latter
shows significant deflection when up to 10 kV of voltage
bias is applied. Such large deflections is attributed to the
proximity of the DEA to an elastostatic bifurcation in-
stability. At this instability, small changes in membrane
stretch can lead to large changes in frame bending an-
gle. This condition is similar to the elastic instability
in an Euler column and corresponds to the bifurcation
shift shown in Fig. 4. It is clear from the plot that the
change ∆ψ under applied voltage is greatest near this
bifurcation.

To better understand the influence of DEA design pa-
rameters on electro-flexural response, a scaling law is
established based on an analytic approximation to the
governing BVP. Of particular interest is the special case
when λy = 1. Noting that us ≈ 0 and µ ≈ 1/λsλy, the
governing equations simplify to the following Helmholtz
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The steps used to obtain µ and W are presented in the
Supplementary Information.
The shape of the DEA at static equilibrium is deter-

mined by minimizing the total potential energy of the
system is Π w.r.t. kinematically-admissible variations in
α and u. The potential is composed of energy contribu-
tions from elastic strain (Ψ), electrical enthalpy (Γ), and
the bending energy of the frame (U):
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where L = (Ψ + Γ)H/λsλy is the Lagrangian density
and D = Efwfh3

f/12 is the flexural rigidity of the frame.
For a voltage drop Φ and electric permittivity ϵ,
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At static equilibrium, Π must be minimized w.r.t. κ, η,
us, and uy. This implies that each function ϕ(s, y) ∈
{η, us, uy} must satisfy the Euler-Lagrange equation
Lϕ − (∂L /∂ϕ,s),s − (∂L /∂ϕ,y),y = 0 subject to the
Dirichlet boundary condition ϕ = 0 on S ′. The Euler-
Lagrange equations can be expressed as the following sys-
tem of elliptic PDEs:

−∇̃ · (c1∇̃η) + a1η = f1

−∇̃ · (c2∇̃us) + a2us = f2
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FIG. 3. Plot of frame bending angle φ versus Φ for the same
parameters as in Fig. 2.
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Together with the boundary conditions, this implies uy =
0 ∀x ∈ S ′. This leaves a system of PDEs that must be
solved only for η(s, y) and us(s, y).

A numerical solution to the elliptic BVP is obtained
in MATLAB R2015a using the pdenonlin function. This
solver applies a damped Gauss-Newton iteration algo-
rithm to the finite element matrices generated for a tri-
angular mesh. Let ℓ = 2 cm, w = 1 cm, H = 130 µm, E
= 170 kPa, C1 = E/6, ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012

F/m, Ef = 1 MPa, wf = 1 cm, hf = 1.3 mm, λs =
2, and λy = 1. The stable shape of the DEA at static
equilibrium is shown in Fig. 2 for Φ = 0 and a plot of
ψ = αℓ/π versus Φ is presented in Fig. 3. The latter
shows significant deflection when up to 10 kV of voltage
bias is applied. Such large deflections is attributed to the
proximity of the DEA to an elastostatic bifurcation in-
stability. At this instability, small changes in membrane
stretch can lead to large changes in frame bending an-
gle. This condition is similar to the elastic instability
in an Euler column and corresponds to the bifurcation
shift shown in Fig. 4. It is clear from the plot that the
change ∆ψ under applied voltage is greatest near this
bifurcation.

To better understand the influence of DEA design pa-
rameters on electro-flexural response, a scaling law is
established based on an analytic approximation to the
governing BVP. Of particular interest is the special case
when λy = 1. Noting that us ≈ 0 and µ ≈ 1/λsλy, the
governing equations simplify to the following Helmholtz
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Another condition for static equilibrium is that Π must be minimized w.r.t. κ. 
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Solution Method 

1. Select a voltage V 
 
2. Determine α 

 2.1 Use ‘fminbnd’ to find α that minimizes Π 
 2.2 For each value of α, calculate Π 
  2.2.1 Use ‘pdenonlin’ to solve PDEs and obtain {η, us, uy} 
  2.2.2 Numerically integrate Lagrangian density  
  2.2.3 Calculate bending energy of frame:  Uf = Dℓα2/4 

 
3. Calculate total bending angle of frame: φ = αℓ/π
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−∇⋅ c1∇η( )+ a1η= f1
−∇⋅ c2∇us( )+ a2us = f2
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solutions 
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derivatives) 



Results 

In pseudo-matrix form,

F =

⎡

⎣

λs(1 + us,s − κη) λyus,y −µ̂η,s
λsuy,s λy(1 + uy,y) −µ̂η,y(1− κη)

λs(η,s + κus) λyη,y µ̂(1− κη)

⎤

⎦ (8)

Solving det(F) = 1 for µ̂ yields

µ̂−1 ≈ λsλy

{

η2,s + (1− κη)2(1 + η2,y)
}

. (9)

Lastly, substituting this into IB = tr(FF⊤) yields the following expression for the first
invariant of the Left Cauchy-Green tensor:

IB = λs
2
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2 + (1 + us,s − κη)2 + u2

y,s

}

+ λy
2
{
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2 + η2,y + u2

s,y

}

+
1

λs
2λy

2
{

η2,s + (1− κη)2(1 + η2,y)
} . (10)

2 Numerical Analysis

A numerical solution to the elliptic BVP is obtained in MATLAB R2015a using the pde-
nonlin function. This solver applies a damped Gauss-Newton iteration algorithm to the
finite element matrices generated for a triangular mesh. For the results in Figs. 3-5 of the
manuscript, ℓ = 2 cm, w = 1 cm, H = 130 µm, E = 170 kPa, C1 = E/6, ϵ = ϵrϵ0, ϵr = 2,
ϵ0 = 8.85×1012 F/m, Ef = 1 MPa, wf = 1 cm, hf = 1.3 mm, and λy = 1. Various values
of λs and Φ are selected. Because of the limited documentation available for pdenonlin, it is
challenging to produce code for solving the equations in (6). To aid the reader, the complete
code used to generate to Fig. 4 is presented in the following pages.
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FIG. 1. Electromechanical response of flexure-mode DEA
with polyacrylate frame and EGaIn-coated dielectric.

and X3 ∈ [−H/2, H/2]. The frame is also naturally flat
and rectangular, with an interior rectangular opening of
width w and length ℓ in the principal E1 and E2 direc-
tions, respectively. The border of the frame has a thick-
ness hf , width wf/2 in the E2 direction, and Young’s
modulus Ef . The exposed surfaces of the membrane are
coated with electrodes that remain intact (and electri-
cally conductive) during stretching (e.g. carbon grease
or liquid metal).
In order to bond the edges of the membrane to the

frame interior, the membrane must be given a bi-axial
prestretch {λs = ℓ/L,λy = w/W}. If the membrane
tension is sufficiently large, the frame will bend in the
E1 − E3 plane. Let S denote a ruled surface that is ev-
erywhere tangent to the bending frame and define the
convecting surface coordinates s = λsX1 ∈ [ℓ/2, ℓ/2] and
y = λyX2 ∈ [w/2, w/2] along the length and width,
respectively. The normalized tangent vectors are es =
cosφE1 + sinφE3 and ey = E2, where κ = dφ/ds is
the frame curvature and φ = φ(s) is the bending angle.
Since the frame is primarily loaded by axial tension from
the membrane, It will be assumed that κ has the form
κ = α cos(πs/ℓ). This kinematic restriction represents
a simplifying approximation that is based on the post-
buckling solution of an Euler column and is consistent
with experimental observations .
Let u = u(s, y) = uses + uyey + ηen denote the dis-

placement of the membrane’s midplane w.r.t. S, where
en = es×ey = − sinφE1+cosφE3 is the unit normal. In
the current placement Ω, material points have position

x = χ(X) = r+ uses + (y + uy)ey + ηen + µX3e3 . (1)

Here, χ : Ω0 → Ω is the deformation mapping, r = r(s) is
the space curve formed by the convecting X1-coordinate
line (for X2 = X3 = 0; r,s = es), e3 is the surface
normal acting through the thickness of the membrane,
and µ is the principle stretch along e3. The surface nor-
mal is computed as e3 = es

′ × ey
′/||es′ × ey

′||, where
es

′ = ∂χ/∂s and ey
′ = ∂χ/∂y are the covarient bases

that span the tangent plane at each point on the mid-
plane S ′ = {x ∈ Ω : X3 = 0}. The gradient of the
deformation mapping F = ∇χ is used to determine the
strain energy density Ψ = Ψ(s, y) and Jacobian determi-
nant J = det(F) of the membrane.
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FIG. 2. Solution with Φ = 0 for the following parameters: ℓ
= 2 cm, w = 1 cm, H = 130 µm, E = 170 kPa, C1 = E/6,
ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012 F/m, Ef = 1 MPa, wf = 1
cm, hf = 1.3 mm, λs = 2, and λy = 1.

As with other studies of DEA electro-elastostatics,
the dielectric is treated it as an incompressible Neo-
Hookean solid with coefficient of elasticity C1.26,28 There-
fore, Ψ = C1(IB − 3), where IB = tr(B) is the first
invariant of the Left Cauchy-Green deformation ten-
sor B = FF⊤. In general, the Lagrangian gradient
∇L = {∂/∂Xi}Ei should be used to calculate F, i.e.
∇χ = χ ⊗ ∇L. However, it is instead more convenient
to take the gradient w.r.t. the operator ∇ = R∇L,
where R = es ⊗ E1 + ey ⊗ E2 + en ⊗ E3 and {X1, X2}
are replaced with {s/λs, y/λy}. This is admissible since

F̂ := χ⊗∇ = FR⊤ ⇒ F̂F̂⊤ ≡ B and det(F̂) ≡ J . Since
the membrane is incompressible, the condition J = 1 is
used to solve for µ:

µ ≈
1

λsλy
√

η2,s + (1− κη)2(1 + η2,y)
. (2)
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FIG. 1. Electromechanical response of flexure-mode DEA
with polyacrylate frame and EGaIn-coated dielectric.

and X3 ∈ [−H/2, H/2]. The frame is also naturally flat
and rectangular, with an interior rectangular opening of
width w and length ℓ in the principal E1 and E2 direc-
tions, respectively. The border of the frame has a thick-
ness hf , width wf/2 in the E2 direction, and Young’s
modulus Ef . The exposed surfaces of the membrane are
coated with electrodes that remain intact (and electri-
cally conductive) during stretching (e.g. carbon grease
or liquid metal).
In order to bond the edges of the membrane to the

frame interior, the membrane must be given a bi-axial
prestretch {λs = ℓ/L,λy = w/W}. If the membrane
tension is sufficiently large, the frame will bend in the
E1 − E3 plane. Let S denote a ruled surface that is ev-
erywhere tangent to the bending frame and define the
convecting surface coordinates s = λsX1 ∈ [ℓ/2, ℓ/2] and
y = λyX2 ∈ [w/2, w/2] along the length and width,
respectively. The normalized tangent vectors are es =
cosφE1 + sinφE3 and ey = E2, where κ = dφ/ds is
the frame curvature and φ = φ(s) is the bending angle.
Since the frame is primarily loaded by axial tension from
the membrane, It will be assumed that κ has the form
κ = α cos(πs/ℓ). This kinematic restriction represents
a simplifying approximation that is based on the post-
buckling solution of an Euler column and is consistent
with experimental observations .
Let u = u(s, y) = uses + uyey + ηen denote the dis-

placement of the membrane’s midplane w.r.t. S, where
en = es×ey = − sinφE1+cosφE3 is the unit normal. In
the current placement Ω, material points have position

x = χ(X) = r+ uses + (y + uy)ey + ηen + µX3e3 . (1)

Here, χ : Ω0 → Ω is the deformation mapping, r = r(s) is
the space curve formed by the convecting X1-coordinate
line (for X2 = X3 = 0; r,s = es), e3 is the surface
normal acting through the thickness of the membrane,
and µ is the principle stretch along e3. The surface nor-
mal is computed as e3 = es

′ × ey
′/||es′ × ey

′||, where
es

′ = ∂χ/∂s and ey
′ = ∂χ/∂y are the covarient bases

that span the tangent plane at each point on the mid-
plane S ′ = {x ∈ Ω : X3 = 0}. The gradient of the
deformation mapping F = ∇χ is used to determine the
strain energy density Ψ = Ψ(s, y) and Jacobian determi-
nant J = det(F) of the membrane.
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FIG. 2. Solution with Φ = 0 for the following parameters: ℓ
= 2 cm, w = 1 cm, H = 130 µm, E = 170 kPa, C1 = E/6,
ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012 F/m, Ef = 1 MPa, wf = 1
cm, hf = 1.3 mm, λs = 2, and λy = 1.

As with other studies of DEA electro-elastostatics,
the dielectric is treated it as an incompressible Neo-
Hookean solid with coefficient of elasticity C1.26,28 There-
fore, Ψ = C1(IB − 3), where IB = tr(B) is the first
invariant of the Left Cauchy-Green deformation ten-
sor B = FF⊤. In general, the Lagrangian gradient
∇L = {∂/∂Xi}Ei should be used to calculate F, i.e.
∇χ = χ ⊗ ∇L. However, it is instead more convenient
to take the gradient w.r.t. the operator ∇ = R∇L,
where R = es ⊗ E1 + ey ⊗ E2 + en ⊗ E3 and {X1, X2}
are replaced with {s/λs, y/λy}. This is admissible since

F̂ := χ⊗∇ = FR⊤ ⇒ F̂F̂⊤ ≡ B and det(F̂) ≡ J . Since
the membrane is incompressible, the condition J = 1 is
used to solve for µ:

µ ≈
1

λsλy
√

η2,s + (1− κη)2(1 + η2,y)
. (2)



Results 

In pseudo-matrix form,

F =

⎡

⎣

λs(1 + us,s − κη) λyus,y −µ̂η,s
λsuy,s λy(1 + uy,y) −µ̂η,y(1− κη)

λs(η,s + κus) λyη,y µ̂(1− κη)

⎤

⎦ (8)

Solving det(F) = 1 for µ̂ yields

µ̂−1 ≈ λsλy

{

η2,s + (1− κη)2(1 + η2,y)
}

. (9)

Lastly, substituting this into IB = tr(FF⊤) yields the following expression for the first
invariant of the Left Cauchy-Green tensor:

IB = λs
2
{

(η,s + κus)
2 + (1 + us,s − κη)2 + u2

y,s

}

+ λy
2
{

(1 + uy,y)
2 + η2,y + u2

s,y

}

+
1

λs
2λy

2
{

η2,s + (1− κη)2(1 + η2,y)
} . (10)

2 Numerical Analysis

A numerical solution to the elliptic BVP is obtained in MATLAB R2015a using the pde-
nonlin function. This solver applies a damped Gauss-Newton iteration algorithm to the
finite element matrices generated for a triangular mesh. For the results in Figs. 3-5 of the
manuscript, ℓ = 2 cm, w = 1 cm, H = 130 µm, E = 170 kPa, C1 = E/6, ϵ = ϵrϵ0, ϵr = 2,
ϵ0 = 8.85×1012 F/m, Ef = 1 MPa, wf = 1 cm, hf = 1.3 mm, and λy = 1. Various values
of λs and Φ are selected. Because of the limited documentation available for pdenonlin, it is
challenging to produce code for solving the equations in (6). To aid the reader, the complete
code used to generate to Fig. 4 is presented in the following pages.
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FIG. 1. Electromechanical response of flexure-mode DEA
with polyacrylate frame and EGaIn-coated dielectric.

and X3 ∈ [−H/2, H/2]. The frame is also naturally flat
and rectangular, with an interior rectangular opening of
width w and length ℓ in the principal E1 and E2 direc-
tions, respectively. The border of the frame has a thick-
ness hf , width wf/2 in the E2 direction, and Young’s
modulus Ef . The exposed surfaces of the membrane are
coated with electrodes that remain intact (and electri-
cally conductive) during stretching (e.g. carbon grease
or liquid metal).
In order to bond the edges of the membrane to the

frame interior, the membrane must be given a bi-axial
prestretch {λs = ℓ/L,λy = w/W}. If the membrane
tension is sufficiently large, the frame will bend in the
E1 − E3 plane. Let S denote a ruled surface that is ev-
erywhere tangent to the bending frame and define the
convecting surface coordinates s = λsX1 ∈ [ℓ/2, ℓ/2] and
y = λyX2 ∈ [w/2, w/2] along the length and width,
respectively. The normalized tangent vectors are es =
cosφE1 + sinφE3 and ey = E2, where κ = dφ/ds is
the frame curvature and φ = φ(s) is the bending angle.
Since the frame is primarily loaded by axial tension from
the membrane, It will be assumed that κ has the form
κ = α cos(πs/ℓ). This kinematic restriction represents
a simplifying approximation that is based on the post-
buckling solution of an Euler column and is consistent
with experimental observations .
Let u = u(s, y) = uses + uyey + ηen denote the dis-

placement of the membrane’s midplane w.r.t. S, where
en = es×ey = − sinφE1+cosφE3 is the unit normal. In
the current placement Ω, material points have position

x = χ(X) = r+ uses + (y + uy)ey + ηen + µX3e3 . (1)

Here, χ : Ω0 → Ω is the deformation mapping, r = r(s) is
the space curve formed by the convecting X1-coordinate
line (for X2 = X3 = 0; r,s = es), e3 is the surface
normal acting through the thickness of the membrane,
and µ is the principle stretch along e3. The surface nor-
mal is computed as e3 = es

′ × ey
′/||es′ × ey

′||, where
es

′ = ∂χ/∂s and ey
′ = ∂χ/∂y are the covarient bases

that span the tangent plane at each point on the mid-
plane S ′ = {x ∈ Ω : X3 = 0}. The gradient of the
deformation mapping F = ∇χ is used to determine the
strain energy density Ψ = Ψ(s, y) and Jacobian determi-
nant J = det(F) of the membrane.
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FIG. 2. Solution with Φ = 0 for the following parameters: ℓ
= 2 cm, w = 1 cm, H = 130 µm, E = 170 kPa, C1 = E/6,
ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012 F/m, Ef = 1 MPa, wf = 1
cm, hf = 1.3 mm, λs = 2, and λy = 1.

As with other studies of DEA electro-elastostatics,
the dielectric is treated it as an incompressible Neo-
Hookean solid with coefficient of elasticity C1.26,28 There-
fore, Ψ = C1(IB − 3), where IB = tr(B) is the first
invariant of the Left Cauchy-Green deformation ten-
sor B = FF⊤. In general, the Lagrangian gradient
∇L = {∂/∂Xi}Ei should be used to calculate F, i.e.
∇χ = χ ⊗ ∇L. However, it is instead more convenient
to take the gradient w.r.t. the operator ∇ = R∇L,
where R = es ⊗ E1 + ey ⊗ E2 + en ⊗ E3 and {X1, X2}
are replaced with {s/λs, y/λy}. This is admissible since

F̂ := χ⊗∇ = FR⊤ ⇒ F̂F̂⊤ ≡ B and det(F̂) ≡ J . Since
the membrane is incompressible, the condition J = 1 is
used to solve for µ:

µ ≈
1

λsλy
√

η2,s + (1− κη)2(1 + η2,y)
. (2)

3

Substituting this solution into the expression forW yields

Ψ = C1

{

λs
2
[

(η,s + κus)
2 + (1 + us,s − κη)2 + u2

y,s

]

+λy
2
[

(1 + uy,y)
2 + η2,y + u2

s,y

]

+
1

λs
2λy

2
[

η2,s + (1 − κη)2(1 + η2,y)
] − 3

}

.(3)

The steps used to obtain µ and W are presented in the
Supplementary Information.
The shape of the DEA at static equilibrium is deter-

mined by minimizing the total potential energy of the
system is Π w.r.t. kinematically-admissible variations in
α and u. The potential is composed of energy contribu-
tions from elastic strain (Ψ), electrical enthalpy (Γ), and
the bending energy of the frame (U):

Π =

∫

Ω0

Ψ dV +

∫

Ω

Γ dv +

∫

F

U dA

=

∫ ℓ/2

−ℓ/2

∫ w/2

−w/2
L dyds+

∫ ℓ/2

−ℓ/2

1

2
Dκ2 ds , (4)

where L = (Ψ + Γ)H/λsλy is the Lagrangian density
and D = Efwfh3

f/12 is the flexural rigidity of the frame.
For a voltage drop Φ and electric permittivity ϵ,

Γ = −
1

2
ϵ

(

Φ

µH

)2

. (5)

At static equilibrium, Π must be minimized w.r.t. κ, η,
us, and uy. This implies that each function ϕ(s, y) ∈
{η, us, uy} must satisfy the Euler-Lagrange equation
Lϕ − (∂L /∂ϕ,s),s − (∂L /∂ϕ,y),y = 0 subject to the
Dirichlet boundary condition ϕ = 0 on S ′. The Euler-
Lagrange equations can be expressed as the following sys-
tem of elliptic PDEs:

−∇̃ · (c1∇̃η) + a1η = f1

−∇̃ · (c2∇̃us) + a2us = f2

−∇̃ · (c3∇̃uy) + a3uy = f3 , (6)

where ∇̃ = (∂/∂s)es + (∂/∂y)ey and

c1 =

{

λs
2
(

1− λy
2µ4

)

−
λsλyϵΦ2

2C1H

}

es ⊗ es

+
{

λy
2
(

1− λs
2µ4(1− κη)2

)

−
λsλyϵΦ2

2C1H
(1− κη)2

}

ey ⊗ ey

c2 = c3 = λs
2
es ⊗ es + λy

2
ey ⊗ ey

a1 = λs
2κ2

{

1− λy
2µ4(1 + η,y)

2
}

−
λsλyϵΦ2

2C1H
κ2(1 + η2,y)

a2 = λs
2κ2

a3 = 0

Φ (kV)
0 5 10 15 20

ψ
 (d

eg
re

es
)

-50

-40

-30

-20

-10

0

10

20

30

40

50

FIG. 3. Plot of frame bending angle φ versus Φ for the same
parameters as in Fig. 2.

f1 = λs
2κ

{

1 + 2us,s − λy
2µ4(1 + η,y)

2
}

+λs
2κ,sus −

λsλyϵΦ2

2C1H
κ(1 + η2,y)

f2 = −λs
2(κ,sη + 2κη,s)

f3 = 0 .

Together with the boundary conditions, this implies uy =
0 ∀x ∈ S ′. This leaves a system of PDEs that must be
solved only for η(s, y) and us(s, y).

A numerical solution to the elliptic BVP is obtained
in MATLAB R2015a using the pdenonlin function. This
solver applies a damped Gauss-Newton iteration algo-
rithm to the finite element matrices generated for a tri-
angular mesh. Let ℓ = 2 cm, w = 1 cm, H = 130 µm, E
= 170 kPa, C1 = E/6, ϵ = ϵrϵ0, ϵr = 2, ϵ0 = 8.85×1012

F/m, Ef = 1 MPa, wf = 1 cm, hf = 1.3 mm, λs =
2, and λy = 1. The stable shape of the DEA at static
equilibrium is shown in Fig. 2 for Φ = 0 and a plot of
ψ = αℓ/π versus Φ is presented in Fig. 3. The latter
shows significant deflection when up to 10 kV of voltage
bias is applied. Such large deflections is attributed to the
proximity of the DEA to an elastostatic bifurcation in-
stability. At this instability, small changes in membrane
stretch can lead to large changes in frame bending an-
gle. This condition is similar to the elastic instability
in an Euler column and corresponds to the bifurcation
shift shown in Fig. 4. It is clear from the plot that the
change ∆ψ under applied voltage is greatest near this
bifurcation.

To better understand the influence of DEA design pa-
rameters on electro-flexural response, a scaling law is
established based on an analytic approximation to the
governing BVP. Of particular interest is the special case
when λy = 1. Noting that us ≈ 0 and µ ≈ 1/λsλy, the
governing equations simplify to the following Helmholtz
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FIG. 4. Plot of φ versus λs for Φ = 0 (solid) and 5 kV
(dashed); the remaining values are the same as in Fig. 2.
The shift in the bifurcation point enables large deflection.
For example, a frame that bends under a membrane stretch
λs = 1.5 is expected to completely flatten when a 5 kV bias
is applied.

equation:

η,ss +

(

1− ζ

λs
2 − ζ

)

η,yy = κ2η − κ . (7)

where ζ = λs
−2 + λsϵΦ2/2C1H . Since the expression is

separable, an analytic solution is possible although this
will contain non-elementary Mathieu functions. Omit-
ting the κ2η term leads to a Poisson’s equation, which
has the following solution:

η =
αℓ2

π2

{

1−
eωy + e−ωy

eωw/2 + e−ωw/2

}

cos
(πs

ℓ

)

(8)

where ω =
π

ℓ

√

λs
2 − ζ

1− ζ
.

This suggests that, to first order, the membrane may
be roughly approximated as a flat surface of width w
that connects the edges of the frame at s = ±ℓ/2. Fur-
ther simplifying the problem by assuming a constant
frame curvature κ, the corresponding principle stretches
are estimated as λ1 = λs(1 − κ2ℓ2/24), λ2 = 1, and
λ3 = 1/λ1 (see also32 for a related flexure-mode DEA
model). In general, the potential energy is extremized
when κ = 0 and this corresponds to static equilibrium
(i.e. Π minimized) so long as d2Π/dκ2 ≥ 0. Alterna-
tively, if d2Π/dκ2 < 0, then the system undergoes an
elastic instability. To establish a scaling law for instabil-
ity, the potential is estimated as

Π ∼ C1

{

λs
2 +

1

λs
2
−

(

λs
2 −

1

λs
2

)

κ2ℓ2

12
− 2

}

wHL

−
ϵwLΦ2

2H

(

1−
κ2ℓ2

12

)

+
1

2
Dκ2ℓ . (9)

The condition d2Π/dκ2 < 0 therefore implies

Λ :=
2C1wH2L2

(

λs
3 − λs

−1
)

ϵwL2Φ2λs + Efwfh3
fH

> 1 . (10)

This suggests that a sufficiently large prestretch λs is
required to induce frame bending and that the mini-
mum required stretch λcr increases when voltage is ap-
plied. This outcome of the scaling analysis is consis-
tent with the shift in the bifurcation point that is ob-
served in Fig. 4. Although it does not predict the
actual bending curvature, (10) is potentially useful in
identifying the critical prestretch above which instability-
controlled electro-flexural coupling will occur. Specifi-
cally, λcr = {λ > 1 : Λ = 1} can be determined numeri-
cally as the solution to a fourth-order polynomial.
As an example of how the analytic approximation com-

pares with the numerical analysis, consider the parame-
ters used for Figs. 2-4. When Φ = 0, the inequality (10)
is satisfied, i.e. Λ = 2.52. As Φ approaches 20 kV, Λ
drops below unity and the frame will flatten due to inad-
equate membrane tension. According to the scaling law,
Λ = 1 when Φ = 11 kV. Although larger than the numer-
ically calculated bifurcation voltage (≈ 10 kV; Fig. 3),
this estimate is in reasonable agreement considering the
very rough approximations used to obtain (9). Likewise,
Λ = 1 for Φ = 0 and λs = 1.25, which is close to the
numerically calculated bifurcation shown in Fig. 3. Un-
der a 5 kV bias, (10) predicts a bifurcation instablity at
λs = 1.42, which is again consistent with the numerical
solution.
In summary, a measurement performed with a EGaIn-

coated DEA (Fig. 1) demonstrates the potential for
large electro-flexural coupling. This is explained with a
membrane theory that incorporates hyperelasticity and
Maxwell stress (through electrical enthalpy). The bend-
ing response ψ = ψ(Φ) is determined by solving a sys-
tem of elliptic PDEs using the method of finite elements.
This numerical analysis reveals a bifurcation instability
that, like the limit-point instability in inflation-controlled
DEA balloons, can lead to a significant increase in elec-
tromechanical response. To examine this further, an an-
alytic approximation is obtained by reducing the govern-
ing PDEs to a single Poisson’s equation and performing
a scaling analysis. This results in an algebraic expression
for a non-dimensional value Λ that can be used to ex-
amine the voltage-controlled shift in the bifurcation. In
particular, we find that the flexural response of the frame
is greatest when the principle membrane pre-stretch λs
is just above a critical value λcr such that the system be-
comes sub-critical (Λ < 1) when a prescribed voltage is
applied. The predictions of this algebraic stability crite-
rion is in reasonable agreement with the numerical analy-
sis and can be used to inform DEA design. Future efforts
can extend this theoretical framework to other flexure-
mode DEA geometries and explore electro-elastostatics
under additional loads associated with applications in
soft robotics and morphologically-adaptive architectures.

λs = 2, varying Φ varying λs  

Φ = 0 

Φ = 5 kV 
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VI. CONCLUSION 
 
We have presented proof of concept, multisegment 

dielectric elastomer minimum energy structure (DEMES) 
actuators as the fundamental component of a deployable 
microsatellite gripper. The actuators possess uniquely 
advantageous properties for this application including their 
low mass, damage resilience and mechanical flexibility, 
enabling rolled storage prior to deployment and successful 
operation. These devices can currently be made at relative low 
cost whilst maintaining good repeatability, accuracy and 
mechanical resilience. Three small-scale actuator designs were 
fabricated and characterized in terms of bending angle, for an 
applied voltage, and gripping (reaction) force. All the 
actuators were rolled prior to deployment and testing. Our 
devices, weighing less than 0.65g, produced a change in tip 
angle of approximately 60 degrees, and a maximum gripping 
force of 2.2 mN for small displacements of the actuator tip. 
This initial investigation has proved the concept of using 
rolled multisegment DEMES for volume efficient gripper 
storage, and provided a road map for future actuator 
development.  
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Model and design of dielectric 
elastomer minimum energy 
structures 
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of the materials, such as plastic creep in the frame, and stress
relaxation in the dielectric membrane.

2. Analytical model

The DEMES (figure 3) is modelled by a rectangular frame
with a rectangular hole at its center. The important dimen-
sions and material parameters are defined in table 1 . They are
the width of the hole w (which is also the width of the
membrane), the length of the hole c (which deforms into a
sector of a circle of angle θ), the width of the bending portion
of the frame, two stripes of b 2 each, and the thickness of the
frame d. In addition, the frame is also characterized by the
Youngʼs modulus of the material it is made of (Yf ). The

membrane has the same width w as the hole in the frame, and
a length which depends on the bending angle of the frame θ as
given by (1), with the particular case =( )l c0 .

θ
θ= ·

l
c2

sin
2

(1)

For this simplified model, the membrane is bridging the
two extremities of the bending portion of the frame, whereas
in reality, the membrane, being also fixed along the c
boundary of the frame, takes a more complex saddle shape.
However, this simplification is necessary in order to have a
simple membrane shape whose strain energy can be calcu-
lated. We expect the impact of this approximation to be
negligible for a first approach, especially at smaller angles θ
and for wide membranes ( >w c).

To calculate the bending energy Ub of the frame as a
function of angle, we assume a constant bending moment
along the frame:

θ θ=
· ·

· = ·U
Y b d

c
k

1
2 12

1
2

, (2)b
f

b

3
2 2

with kb the bending spring constant, by analogy with a linear
spring. The stiffness of the frame can therefore be tuned by
modifying its geometry, or by changing the material it is
made of.

2.1. Membrane strain energy

Elastic energy is stored in the membrane by prestretching it
before fixing it to the frame. In order to bend the frame along
the y axis (see figure 3), pure shear prestretch is used
(figure 4). Thus, the width of the membrane is kept constant
and equal to the hole width w. The initial length of the
membrane l0 is stretched until the membrane reaches the size
of the hole in the frame ×w c( ), at which point it is fixed to
the frame. Under these conditions, and taking the membrane
incompressibility into account (λ λ λ = 1x y z ), the prestretches
in the membrane, when it is applied on the flat frame, are
given by:

λ λ λ λ λ= = = =c
l

, 1,
1

, (3)px p py pz
p0

where the indices p and x y z, , refer respectively to prestretch

Figure 2. Example of a two-finger gripper made with DEMES. In
this case the frame geometry simply consists of a rectangle with a
rectangular hole at the center.

Figure 3. DEMES geometrical configuration: a frame with a
rectangular hole of dimension ×c w and two bending arms, each of
them of size ×b c2 . The membrane is stretched across the hole and
has a size ×l w. The curved length of the frame is linked to the
membrane length l by the bending angle of the frame θ.

Table 1. Definition of the different variables used to describe the
geometry and mechanical properties of the frame and the membrane.

c length of the bending part of the frame

b width of the bending part of the frame (separated in two
arms of width b 2)

d thickness of the frame
Yf Young Modulus of the frame
θ bending angle of the frame
w width of the membrane
l, l0 stretched and initial length of the membrane
t, t0 stretched and initial thickness of the membrane
μ, Jm Gent model mechanical parameters for the membrane
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remains constant when deformed, and it is therefore only
necessary to calculate the volume in one particular config-
uration, for example, before the prestretching step, when the
membrane is in its reference state:

λ
μ

λ λ

= · · · = − · ·

× − + −−⎛
⎝⎜

⎞
⎠⎟

U l w t u
c w t J

J

2

ln 1
2

. (8)

el
p

m

m

0 0
0

2 2

To take the effect of the electric-field induced Maxell
pressure on the membrane strain energy into account, we
assume that the elastomer behaves as an ideal dielectric so
that the total energy in the membrane is the sum of the elastic
energy and the electrostatic energy [2]. The electrostatic
energy Ues is defined as:

ϵ λ
λ= − · = − · · ·

U
C V c w V

t2 2
, (9)es

p

2 2 2

0

where C is the capacitance of the device, V is the applied
voltage, and ϵ is the permittivity of the dielectric. The minus
signs comes from the fact that in constant voltage operation,
the energy is provided by the external voltage source to the
actuator.

Finally, the total energy of the system Utot is the sum of
the frame-bending energy (2), and the membrane-free energy
(8) and (9):

θ θ λ
μ

λ λ ϵ λ
λ

=
· ·

· − · ·

× − + − − · · ·−⎛
⎝⎜

⎞
⎠⎟

( )U V
Y b d

c

c w t J

J
c w V

t

,
1
2 12 2

ln 1
2

2

, (10)
tot

f

p

m

m p

3
2 0

2 2 2 2

0

using (5) to express the stretch λ as a function of the bending
angle θ. The equilibrium angle is found by minimizing
equation (10), which is equivalent to solving:

θ
∂
∂ =U

0, (11)tot

and controlling that the obtained solution corresponds to a
local minimum.

3. Application of the model

3.1. Frame and membrane

We used the analytical model presented above by calculating
the behaviour of a realistic DEMES. We chose a frame made
out of μ25 m steel with a Young modulus =Y 200 GPaf .
Steel was chosen for the numerical application because it
behaves elastically and is less subject to creep than plastic
thin foils (see section 3.3). However, it should be noted that
the exact same bending stiffness would be obtained for a

μ110 m-thick PET frame. The width of each beam b 2 was
equal to 3 mm, and the hole cut into the steel shim was

× = ×w c 20 10 mm2.

For the elastomeric membrane, and in order to obtain a
relevant set of parameters, we conducted an experimental
pull-test on a silicone membrane with Dow Corning Sylgard
186. Because the membrane of the considered structure was
in a pure shear condition, a pure shear pull test was performed
in order to obtain the two material parameters of the Gent
model (6). This was done by using a sample much wider than
its length, so as to avoid reduction of the sample width during
the test and to ensure a pure shear condition [23]. Our samples
were ×110 10 mm2, the smallest dimensions being placed in
the pulling direction. The thickness of the samples was

μ38 m. Figure 5 presents the results of the pure shear pull
test together with a fit of the Gent hyperelastic model. The
parameters of the model extracted from the curve fitting were
μ = 0.16 MPa and =J 18.3m . Two pull tests were performed
on different samples and led to the same model parameters.
The fit was performed for stretch values between 1 and 3,
which are of interest for the present study, even though it was
possible to mechanically stretch the sample to higher values.
However, at higher stretch values the Gent model starts to
diverge from the data, and the parameter values that we give
here for Sylgard 186 are therefore valid only for pure shear
stretch <3. It can be seen on figure 5 that the Gent model fits
the data very well in this stretch range.

As there are many parameters that influence the actuator
behaviour, we decided to fix the frame parameters (geometry
and material), as well as the membrane material (using the
Gent model parameters presented above for Dow Corning
Sylgard 186). The remaining degrees of freedom were
therefore related to the geometry of the membrane. When the
membrane is fixed on the frame (i.e. when θ = 0, which is
equivalent to λ λ= p), the elastic strain energy (8) can be
increased by two different means. The first method occurs by
increasing the prestretch, which the strain energy density, but
decreases the volume of the membrane. However, as the
strain density increases faster than the volume decreases, a
larger prestretch does indeed contribute to an increase of the
strain energy. The second method involves increasing the
volume of the membrane for a given prestretch-induced stress
also increases the stored elastic energy. This can be done
either by increasing the width of the membrane or by
increasing its thickness. It effectively increases the membrane
cross-section, and therefore the elastic restoring force in the
membrane. While these last two parameters have the same
effect on the calculation of the elastic energy (8), they have
different implications. For example, increasing the width
increases the overall surface of the device, which can be
undesirable depending on the application. Additionally, if w
becomes large, it then becomes more difficult to prevent the
frame from bending about the x axis. On the other hand,
increasing the thickness has no influence on the volume
occupied by the device. However, the voltage required to
drive the device increases, but this can be addressed by using
a multilayered active membrane [5]. An additional advantage
of varying the membrane thickness as opposed to its width is
the possibility of using the exact same frame to test different
configurations. Consequently, we chose the membrane
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Assumptions: 
•  Membrane detached along side 
•  Frame (modulus = Yf) bends into a 

pure circle 
•  Membrane = Gent solid with shear 

modulus µ. 



Simplified DEMES Model 

remains constant when deformed, and it is therefore only
necessary to calculate the volume in one particular config-
uration, for example, before the prestretching step, when the
membrane is in its reference state:

λ
μ
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To take the effect of the electric-field induced Maxell
pressure on the membrane strain energy into account, we
assume that the elastomer behaves as an ideal dielectric so
that the total energy in the membrane is the sum of the elastic
energy and the electrostatic energy [2]. The electrostatic
energy Ues is defined as:

ϵ λ
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, (9)es
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where C is the capacitance of the device, V is the applied
voltage, and ϵ is the permittivity of the dielectric. The minus
signs comes from the fact that in constant voltage operation,
the energy is provided by the external voltage source to the
actuator.

Finally, the total energy of the system Utot is the sum of
the frame-bending energy (2), and the membrane-free energy
(8) and (9):
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using (5) to express the stretch λ as a function of the bending
angle θ. The equilibrium angle is found by minimizing
equation (10), which is equivalent to solving:

θ
∂
∂ =U

0, (11)tot

and controlling that the obtained solution corresponds to a
local minimum.

3. Application of the model

3.1. Frame and membrane

We used the analytical model presented above by calculating
the behaviour of a realistic DEMES. We chose a frame made
out of μ25 m steel with a Young modulus =Y 200 GPaf .
Steel was chosen for the numerical application because it
behaves elastically and is less subject to creep than plastic
thin foils (see section 3.3). However, it should be noted that
the exact same bending stiffness would be obtained for a

μ110 m-thick PET frame. The width of each beam b 2 was
equal to 3 mm, and the hole cut into the steel shim was

× = ×w c 20 10 mm2.

For the elastomeric membrane, and in order to obtain a
relevant set of parameters, we conducted an experimental
pull-test on a silicone membrane with Dow Corning Sylgard
186. Because the membrane of the considered structure was
in a pure shear condition, a pure shear pull test was performed
in order to obtain the two material parameters of the Gent
model (6). This was done by using a sample much wider than
its length, so as to avoid reduction of the sample width during
the test and to ensure a pure shear condition [23]. Our samples
were ×110 10 mm2, the smallest dimensions being placed in
the pulling direction. The thickness of the samples was

μ38 m. Figure 5 presents the results of the pure shear pull
test together with a fit of the Gent hyperelastic model. The
parameters of the model extracted from the curve fitting were
μ = 0.16 MPa and =J 18.3m . Two pull tests were performed
on different samples and led to the same model parameters.
The fit was performed for stretch values between 1 and 3,
which are of interest for the present study, even though it was
possible to mechanically stretch the sample to higher values.
However, at higher stretch values the Gent model starts to
diverge from the data, and the parameter values that we give
here for Sylgard 186 are therefore valid only for pure shear
stretch <3. It can be seen on figure 5 that the Gent model fits
the data very well in this stretch range.

As there are many parameters that influence the actuator
behaviour, we decided to fix the frame parameters (geometry
and material), as well as the membrane material (using the
Gent model parameters presented above for Dow Corning
Sylgard 186). The remaining degrees of freedom were
therefore related to the geometry of the membrane. When the
membrane is fixed on the frame (i.e. when θ = 0, which is
equivalent to λ λ= p), the elastic strain energy (8) can be
increased by two different means. The first method occurs by
increasing the prestretch, which the strain energy density, but
decreases the volume of the membrane. However, as the
strain density increases faster than the volume decreases, a
larger prestretch does indeed contribute to an increase of the
strain energy. The second method involves increasing the
volume of the membrane for a given prestretch-induced stress
also increases the stored elastic energy. This can be done
either by increasing the width of the membrane or by
increasing its thickness. It effectively increases the membrane
cross-section, and therefore the elastic restoring force in the
membrane. While these last two parameters have the same
effect on the calculation of the elastic energy (8), they have
different implications. For example, increasing the width
increases the overall surface of the device, which can be
undesirable depending on the application. Additionally, if w
becomes large, it then becomes more difficult to prevent the
frame from bending about the x axis. On the other hand,
increasing the thickness has no influence on the volume
occupied by the device. However, the voltage required to
drive the device increases, but this can be addressed by using
a multilayered active membrane [5]. An additional advantage
of varying the membrane thickness as opposed to its width is
the possibility of using the exact same frame to test different
configurations. Consequently, we chose the membrane

5

Smart Mater. Struct. 23 (2014) 085021 S Rosset et al

remains constant when deformed, and it is therefore only
necessary to calculate the volume in one particular config-
uration, for example, before the prestretching step, when the
membrane is in its reference state:
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To take the effect of the electric-field induced Maxell
pressure on the membrane strain energy into account, we
assume that the elastomer behaves as an ideal dielectric so
that the total energy in the membrane is the sum of the elastic
energy and the electrostatic energy [2]. The electrostatic
energy Ues is defined as:
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where C is the capacitance of the device, V is the applied
voltage, and ϵ is the permittivity of the dielectric. The minus
signs comes from the fact that in constant voltage operation,
the energy is provided by the external voltage source to the
actuator.

Finally, the total energy of the system Utot is the sum of
the frame-bending energy (2), and the membrane-free energy
(8) and (9):
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using (5) to express the stretch λ as a function of the bending
angle θ. The equilibrium angle is found by minimizing
equation (10), which is equivalent to solving:
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0, (11)tot

and controlling that the obtained solution corresponds to a
local minimum.

3. Application of the model

3.1. Frame and membrane

We used the analytical model presented above by calculating
the behaviour of a realistic DEMES. We chose a frame made
out of μ25 m steel with a Young modulus =Y 200 GPaf .
Steel was chosen for the numerical application because it
behaves elastically and is less subject to creep than plastic
thin foils (see section 3.3). However, it should be noted that
the exact same bending stiffness would be obtained for a

μ110 m-thick PET frame. The width of each beam b 2 was
equal to 3 mm, and the hole cut into the steel shim was

× = ×w c 20 10 mm2.

For the elastomeric membrane, and in order to obtain a
relevant set of parameters, we conducted an experimental
pull-test on a silicone membrane with Dow Corning Sylgard
186. Because the membrane of the considered structure was
in a pure shear condition, a pure shear pull test was performed
in order to obtain the two material parameters of the Gent
model (6). This was done by using a sample much wider than
its length, so as to avoid reduction of the sample width during
the test and to ensure a pure shear condition [23]. Our samples
were ×110 10 mm2, the smallest dimensions being placed in
the pulling direction. The thickness of the samples was

μ38 m. Figure 5 presents the results of the pure shear pull
test together with a fit of the Gent hyperelastic model. The
parameters of the model extracted from the curve fitting were
μ = 0.16 MPa and =J 18.3m . Two pull tests were performed
on different samples and led to the same model parameters.
The fit was performed for stretch values between 1 and 3,
which are of interest for the present study, even though it was
possible to mechanically stretch the sample to higher values.
However, at higher stretch values the Gent model starts to
diverge from the data, and the parameter values that we give
here for Sylgard 186 are therefore valid only for pure shear
stretch <3. It can be seen on figure 5 that the Gent model fits
the data very well in this stretch range.

As there are many parameters that influence the actuator
behaviour, we decided to fix the frame parameters (geometry
and material), as well as the membrane material (using the
Gent model parameters presented above for Dow Corning
Sylgard 186). The remaining degrees of freedom were
therefore related to the geometry of the membrane. When the
membrane is fixed on the frame (i.e. when θ = 0, which is
equivalent to λ λ= p), the elastic strain energy (8) can be
increased by two different means. The first method occurs by
increasing the prestretch, which the strain energy density, but
decreases the volume of the membrane. However, as the
strain density increases faster than the volume decreases, a
larger prestretch does indeed contribute to an increase of the
strain energy. The second method involves increasing the
volume of the membrane for a given prestretch-induced stress
also increases the stored elastic energy. This can be done
either by increasing the width of the membrane or by
increasing its thickness. It effectively increases the membrane
cross-section, and therefore the elastic restoring force in the
membrane. While these last two parameters have the same
effect on the calculation of the elastic energy (8), they have
different implications. For example, increasing the width
increases the overall surface of the device, which can be
undesirable depending on the application. Additionally, if w
becomes large, it then becomes more difficult to prevent the
frame from bending about the x axis. On the other hand,
increasing the thickness has no influence on the volume
occupied by the device. However, the voltage required to
drive the device increases, but this can be addressed by using
a multilayered active membrane [5]. An additional advantage
of varying the membrane thickness as opposed to its width is
the possibility of using the exact same frame to test different
configurations. Consequently, we chose the membrane
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remains constant when deformed, and it is therefore only
necessary to calculate the volume in one particular config-
uration, for example, before the prestretching step, when the
membrane is in its reference state:
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To take the effect of the electric-field induced Maxell
pressure on the membrane strain energy into account, we
assume that the elastomer behaves as an ideal dielectric so
that the total energy in the membrane is the sum of the elastic
energy and the electrostatic energy [2]. The electrostatic
energy Ues is defined as:
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where C is the capacitance of the device, V is the applied
voltage, and ϵ is the permittivity of the dielectric. The minus
signs comes from the fact that in constant voltage operation,
the energy is provided by the external voltage source to the
actuator.

Finally, the total energy of the system Utot is the sum of
the frame-bending energy (2), and the membrane-free energy
(8) and (9):
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using (5) to express the stretch λ as a function of the bending
angle θ. The equilibrium angle is found by minimizing
equation (10), which is equivalent to solving:
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and controlling that the obtained solution corresponds to a
local minimum.

3. Application of the model

3.1. Frame and membrane

We used the analytical model presented above by calculating
the behaviour of a realistic DEMES. We chose a frame made
out of μ25 m steel with a Young modulus =Y 200 GPaf .
Steel was chosen for the numerical application because it
behaves elastically and is less subject to creep than plastic
thin foils (see section 3.3). However, it should be noted that
the exact same bending stiffness would be obtained for a

μ110 m-thick PET frame. The width of each beam b 2 was
equal to 3 mm, and the hole cut into the steel shim was

× = ×w c 20 10 mm2.

For the elastomeric membrane, and in order to obtain a
relevant set of parameters, we conducted an experimental
pull-test on a silicone membrane with Dow Corning Sylgard
186. Because the membrane of the considered structure was
in a pure shear condition, a pure shear pull test was performed
in order to obtain the two material parameters of the Gent
model (6). This was done by using a sample much wider than
its length, so as to avoid reduction of the sample width during
the test and to ensure a pure shear condition [23]. Our samples
were ×110 10 mm2, the smallest dimensions being placed in
the pulling direction. The thickness of the samples was

μ38 m. Figure 5 presents the results of the pure shear pull
test together with a fit of the Gent hyperelastic model. The
parameters of the model extracted from the curve fitting were
μ = 0.16 MPa and =J 18.3m . Two pull tests were performed
on different samples and led to the same model parameters.
The fit was performed for stretch values between 1 and 3,
which are of interest for the present study, even though it was
possible to mechanically stretch the sample to higher values.
However, at higher stretch values the Gent model starts to
diverge from the data, and the parameter values that we give
here for Sylgard 186 are therefore valid only for pure shear
stretch <3. It can be seen on figure 5 that the Gent model fits
the data very well in this stretch range.

As there are many parameters that influence the actuator
behaviour, we decided to fix the frame parameters (geometry
and material), as well as the membrane material (using the
Gent model parameters presented above for Dow Corning
Sylgard 186). The remaining degrees of freedom were
therefore related to the geometry of the membrane. When the
membrane is fixed on the frame (i.e. when θ = 0, which is
equivalent to λ λ= p), the elastic strain energy (8) can be
increased by two different means. The first method occurs by
increasing the prestretch, which the strain energy density, but
decreases the volume of the membrane. However, as the
strain density increases faster than the volume decreases, a
larger prestretch does indeed contribute to an increase of the
strain energy. The second method involves increasing the
volume of the membrane for a given prestretch-induced stress
also increases the stored elastic energy. This can be done
either by increasing the width of the membrane or by
increasing its thickness. It effectively increases the membrane
cross-section, and therefore the elastic restoring force in the
membrane. While these last two parameters have the same
effect on the calculation of the elastic energy (8), they have
different implications. For example, increasing the width
increases the overall surface of the device, which can be
undesirable depending on the application. Additionally, if w
becomes large, it then becomes more difficult to prevent the
frame from bending about the x axis. On the other hand,
increasing the thickness has no influence on the volume
occupied by the device. However, the voltage required to
drive the device increases, but this can be addressed by using
a multilayered active membrane [5]. An additional advantage
of varying the membrane thickness as opposed to its width is
the possibility of using the exact same frame to test different
configurations. Consequently, we chose the membrane
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prestretch λp and the membrane thickness t0 (which represents
the thickness of the membrane as fabricated) as the two main
design parameters whose influence on the performance of the
device we want to investigate.

As discussed in detail in the next section, increasing the
elastic energy (either by a larger prestretch or a thicker/wider
membrane) increases the initial bending angle of the device
because more energy is available in the membranes, which
can be transferred to the frame.

3.2. Initial angle and actuation range

The first important parameter characterizing the DEMES is its
rest angle or initial angle θ0, which represents how much the
frame bends when the prestretched membrane is glued to the
frame and the assembly is subsequently allowed to relax. The
initial angle is obtained by solving equation (10) in the
absence of electrostatic actuation (V = 0). The results
(figure 6) show that a certain amount of strain energy is
necessary for the frame to start bending, and for too low
thickness or prestretch, the structure remains flat. P this
threshold, an increase of strain energy (obtained either by

increasing the prestretch or the thickness) leads to a larger
initial bending angle, as expected. It can be noted that dif-
ferent pairs of prestrain and thickness values can lead to the
same equilibrium angle. Given a targeted initial angle (e.g.

°90 ), one can either select a thin, highly prestretched mem-
brane or a thick, slightly prestretched membrane, to take two
examples at the extremes. However, the behaviour when
activated differs, even though the rest angles are equal.

To evaluate the effect of actuation, we calculate the
actuation range, i.e. the difference in bending angle between
the rest position, and the position reached at the maximal
voltage. The maximal voltage is the highest voltage that can
be applied to the device without breakdown through the
dielectric membrane. We assume that the elastomeric mem-
brane of the actuator can be characterized by exhibiting a
constant dielectric breakdown field Ebd representing the
highest electric field that the material can sustain without
failure. We have measured breakdown fields around

μV100 m for thin Dow Corning Sylgard 186 membranes
with little to no prestretch, similar to the conditions presented
here [24]. In order to avoid destroying the device, we define a
maximal field Emax with a given security margin relative to the
breakdown field (typically 50 %–80 % of Ebd), representing
the maximal field that can be applied to the device at any
time. In our calculations, we choose a maximal field of

μ70 V m in order to leave a safety margin with respect to the
breakdown field. We therefore define the actuation range as
the difference in bending angle between a situation where no
field is applied across the elastomeric membrane (E = 0), and
when the maximal field is applied to the device ( =E Emax).
However, the electric field applied to the device cannot be
directly controlled by the user, and dielectric elastomer
actuators are usually driven in a voltage-controlled mode. The
electric field across the membrane is linked to the applied
voltage and the current thickness of the membrane by:

λ= = ·
E

V
t

V
t

. (12)
0

For a given applied voltage V the electric field in the mem-
brane is therefore at its maximal value when the membrane is
flat, i.e. when λ λ= p. Consequently, we define the maximal
voltage Vmax that can be applied to a device such as not to
exceed Emax in the membrane at any time by:

λ λ= ·( )V t
E t

, (13)max p
max

p
0

0

As a consequence, for every point of the studied parameter
space (see figure 6), each representing a different device, we
have a different value of the maximal applied voltage, ranging
from 233 V ( μ10 m, λ = 3p ) to 7000 V ( μ100 m, λ = 1p ).
Because the electrostatic pressure p on the device is propor-
tional to the square of the electric field ( ϵ= ·p E2) [1]), it
means that we consider the same electrostatic force acting at
each point in the parameter space, as they are each submitted
to the same electric field when the maximal voltage is applied.

Figure 5. Pure shear pull test on a Dow Corning Sylgard 186 sample
and fit with the Gent hyperelastic material model.

Figure 6. Initial bending angle in degrees for different membrane
thickness and prestretch values.
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remains constant when deformed, and it is therefore only
necessary to calculate the volume in one particular config-
uration, for example, before the prestretching step, when the
membrane is in its reference state:
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To take the effect of the electric-field induced Maxell
pressure on the membrane strain energy into account, we
assume that the elastomer behaves as an ideal dielectric so
that the total energy in the membrane is the sum of the elastic
energy and the electrostatic energy [2]. The electrostatic
energy Ues is defined as:
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where C is the capacitance of the device, V is the applied
voltage, and ϵ is the permittivity of the dielectric. The minus
signs comes from the fact that in constant voltage operation,
the energy is provided by the external voltage source to the
actuator.

Finally, the total energy of the system Utot is the sum of
the frame-bending energy (2), and the membrane-free energy
(8) and (9):
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using (5) to express the stretch λ as a function of the bending
angle θ. The equilibrium angle is found by minimizing
equation (10), which is equivalent to solving:

θ
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0, (11)tot

and controlling that the obtained solution corresponds to a
local minimum.

3. Application of the model

3.1. Frame and membrane

We used the analytical model presented above by calculating
the behaviour of a realistic DEMES. We chose a frame made
out of μ25 m steel with a Young modulus =Y 200 GPaf .
Steel was chosen for the numerical application because it
behaves elastically and is less subject to creep than plastic
thin foils (see section 3.3). However, it should be noted that
the exact same bending stiffness would be obtained for a

μ110 m-thick PET frame. The width of each beam b 2 was
equal to 3 mm, and the hole cut into the steel shim was

× = ×w c 20 10 mm2.

For the elastomeric membrane, and in order to obtain a
relevant set of parameters, we conducted an experimental
pull-test on a silicone membrane with Dow Corning Sylgard
186. Because the membrane of the considered structure was
in a pure shear condition, a pure shear pull test was performed
in order to obtain the two material parameters of the Gent
model (6). This was done by using a sample much wider than
its length, so as to avoid reduction of the sample width during
the test and to ensure a pure shear condition [23]. Our samples
were ×110 10 mm2, the smallest dimensions being placed in
the pulling direction. The thickness of the samples was

μ38 m. Figure 5 presents the results of the pure shear pull
test together with a fit of the Gent hyperelastic model. The
parameters of the model extracted from the curve fitting were
μ = 0.16 MPa and =J 18.3m . Two pull tests were performed
on different samples and led to the same model parameters.
The fit was performed for stretch values between 1 and 3,
which are of interest for the present study, even though it was
possible to mechanically stretch the sample to higher values.
However, at higher stretch values the Gent model starts to
diverge from the data, and the parameter values that we give
here for Sylgard 186 are therefore valid only for pure shear
stretch <3. It can be seen on figure 5 that the Gent model fits
the data very well in this stretch range.

As there are many parameters that influence the actuator
behaviour, we decided to fix the frame parameters (geometry
and material), as well as the membrane material (using the
Gent model parameters presented above for Dow Corning
Sylgard 186). The remaining degrees of freedom were
therefore related to the geometry of the membrane. When the
membrane is fixed on the frame (i.e. when θ = 0, which is
equivalent to λ λ= p), the elastic strain energy (8) can be
increased by two different means. The first method occurs by
increasing the prestretch, which the strain energy density, but
decreases the volume of the membrane. However, as the
strain density increases faster than the volume decreases, a
larger prestretch does indeed contribute to an increase of the
strain energy. The second method involves increasing the
volume of the membrane for a given prestretch-induced stress
also increases the stored elastic energy. This can be done
either by increasing the width of the membrane or by
increasing its thickness. It effectively increases the membrane
cross-section, and therefore the elastic restoring force in the
membrane. While these last two parameters have the same
effect on the calculation of the elastic energy (8), they have
different implications. For example, increasing the width
increases the overall surface of the device, which can be
undesirable depending on the application. Additionally, if w
becomes large, it then becomes more difficult to prevent the
frame from bending about the x axis. On the other hand,
increasing the thickness has no influence on the volume
occupied by the device. However, the voltage required to
drive the device increases, but this can be addressed by using
a multilayered active membrane [5]. An additional advantage
of varying the membrane thickness as opposed to its width is
the possibility of using the exact same frame to test different
configurations. Consequently, we chose the membrane
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remains constant when deformed, and it is therefore only
necessary to calculate the volume in one particular config-
uration, for example, before the prestretching step, when the
membrane is in its reference state:
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To take the effect of the electric-field induced Maxell
pressure on the membrane strain energy into account, we
assume that the elastomer behaves as an ideal dielectric so
that the total energy in the membrane is the sum of the elastic
energy and the electrostatic energy [2]. The electrostatic
energy Ues is defined as:
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where C is the capacitance of the device, V is the applied
voltage, and ϵ is the permittivity of the dielectric. The minus
signs comes from the fact that in constant voltage operation,
the energy is provided by the external voltage source to the
actuator.

Finally, the total energy of the system Utot is the sum of
the frame-bending energy (2), and the membrane-free energy
(8) and (9):
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using (5) to express the stretch λ as a function of the bending
angle θ. The equilibrium angle is found by minimizing
equation (10), which is equivalent to solving:
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and controlling that the obtained solution corresponds to a
local minimum.

3. Application of the model

3.1. Frame and membrane

We used the analytical model presented above by calculating
the behaviour of a realistic DEMES. We chose a frame made
out of μ25 m steel with a Young modulus =Y 200 GPaf .
Steel was chosen for the numerical application because it
behaves elastically and is less subject to creep than plastic
thin foils (see section 3.3). However, it should be noted that
the exact same bending stiffness would be obtained for a

μ110 m-thick PET frame. The width of each beam b 2 was
equal to 3 mm, and the hole cut into the steel shim was

× = ×w c 20 10 mm2.

For the elastomeric membrane, and in order to obtain a
relevant set of parameters, we conducted an experimental
pull-test on a silicone membrane with Dow Corning Sylgard
186. Because the membrane of the considered structure was
in a pure shear condition, a pure shear pull test was performed
in order to obtain the two material parameters of the Gent
model (6). This was done by using a sample much wider than
its length, so as to avoid reduction of the sample width during
the test and to ensure a pure shear condition [23]. Our samples
were ×110 10 mm2, the smallest dimensions being placed in
the pulling direction. The thickness of the samples was

μ38 m. Figure 5 presents the results of the pure shear pull
test together with a fit of the Gent hyperelastic model. The
parameters of the model extracted from the curve fitting were
μ = 0.16 MPa and =J 18.3m . Two pull tests were performed
on different samples and led to the same model parameters.
The fit was performed for stretch values between 1 and 3,
which are of interest for the present study, even though it was
possible to mechanically stretch the sample to higher values.
However, at higher stretch values the Gent model starts to
diverge from the data, and the parameter values that we give
here for Sylgard 186 are therefore valid only for pure shear
stretch <3. It can be seen on figure 5 that the Gent model fits
the data very well in this stretch range.

As there are many parameters that influence the actuator
behaviour, we decided to fix the frame parameters (geometry
and material), as well as the membrane material (using the
Gent model parameters presented above for Dow Corning
Sylgard 186). The remaining degrees of freedom were
therefore related to the geometry of the membrane. When the
membrane is fixed on the frame (i.e. when θ = 0, which is
equivalent to λ λ= p), the elastic strain energy (8) can be
increased by two different means. The first method occurs by
increasing the prestretch, which the strain energy density, but
decreases the volume of the membrane. However, as the
strain density increases faster than the volume decreases, a
larger prestretch does indeed contribute to an increase of the
strain energy. The second method involves increasing the
volume of the membrane for a given prestretch-induced stress
also increases the stored elastic energy. This can be done
either by increasing the width of the membrane or by
increasing its thickness. It effectively increases the membrane
cross-section, and therefore the elastic restoring force in the
membrane. While these last two parameters have the same
effect on the calculation of the elastic energy (8), they have
different implications. For example, increasing the width
increases the overall surface of the device, which can be
undesirable depending on the application. Additionally, if w
becomes large, it then becomes more difficult to prevent the
frame from bending about the x axis. On the other hand,
increasing the thickness has no influence on the volume
occupied by the device. However, the voltage required to
drive the device increases, but this can be addressed by using
a multilayered active membrane [5]. An additional advantage
of varying the membrane thickness as opposed to its width is
the possibility of using the exact same frame to test different
configurations. Consequently, we chose the membrane
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The angle at the maximum voltage is calculated by sol-
ving (11) for =V Vmax and the maximum change of angle a
DEMES can provide is obtained by calculating the difference
between the activated angle and the initial angle θ0 (figure 7).
The results show the presence of a very sharp maximum
ridge: for each thickness value, there is an optimal prestretch
value λp opt, that maximizes the actuation angle. Prestretches
even slightly different from the optimal value lead to a sharp
drop in actuation performance. Furthermore, using thicker
membranes with less prestretch is expected to lead to a larger
change in angle.

For a μ40 m membrane, the optimal prestretch is
λ = 1.86p opt, . For this particular case, the bending energy of
the frame, the strain energy of the membrane, as well as the
total energy of the system, are plotted on figure 8. As seen on
the figure, the maximal actuation angle is obtained when the
actuator is designed to reach the flat position when the full
voltage is applied. If the prestretch is lower, then the flat
position is reached at a voltage smaller than Vmax and a further
increase of voltage has no effect on the actuation. Alter-
natively, if the prestretch is higher than the optimal value, the
flat position cannot be reached at Vmax and the actuation range
is drastically reduced. This is caused by geometric effects: a
small variation in the membrane length caused by the elec-
trostatic actuation leads an important change of angle when
the frame is flat. From (1), we see that θd dl is large when θ is
close to 0. In summary, for the chosen frame material and
geometry, and for the chosen elastomer with a μ40 m initial
thickness, the optimal pure shear prestretch is 1.86 for max-
imum actuation range. The equilibrium angle is computed to
be °90 at 0 V and completely flat at the maximal field of

μ70 V m, which corresponds to an applied voltage of
1505 V.

In addition to the actuation angle, another important
parameter is the force that the DEMES can generate. For a
gripper application, it is important for the actuator to be strong

enough to hold and manipulate objects. When the actuator is
at an equilibrium position θ, it acts as a spring whose voltage-
dependent spring constant can be calculated by differentiating
the energy twice with respect to the angle. This is valid for
small deformations perpendicular to the frame, around the
equilibrium position. For the particular case of figure 8, the
local spring constant is 0.15 mN/degree when no voltage is
applied and 0 mN/degrees at =V Vmax. This later value is due
to the flat energy landscape around the equilibrium position
when the maximal voltage is applied. This is systematically
observed when the actuator is designed to reach the flat
position when fully activated, making them especially

Figure 7. Maximal actuation range in degrees for different membrane thickness and prestretch values and an electric field of μ70 V m . The
actuation range is defined as the bending angle difference between the rest angle θ0 and the minimal angle θmin obtained at the maximal
voltage Vmax. The black stars represents a device with a μ40 m membrane at the optimal prestretch (for this thickness) of 1.86.

Figure 8. Bending energy of the frame, strain energy of the
membrane and total energy of the system for 0 V and maximum
voltage. The red crosses indicate the energy minima. μ=t 40 m0 ,
λ = 1.86p .
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membrane stretched on a frame (thickness and prestretch)
must be carefully chosen in order to reach the desired
actuation range and spring constant. This study thus provides
a design guide for DEMES allowing the optimization of such
structures for a given task.
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corresponds to the same situation, but without creep. It can be
seen that creep drastically reduces the maximum tuning range
for the optimal prestretch at each thickness by roughly a
factor of two. We also found that the optimum ridge is much
broader than for the case without creep, meaning that the
maximum actuation angle becomes less sensitive to fabrica-
tion errors and imprecisions (membrane thickness and
prestretch). The broadening of the peak is a geometric effect;
creep prevents to work around the flat position, a zone in
which a small membrane strain leads to an important change
in the frameʼs bending angle. Furthermore, the optimal
prestretch for each thickness value is slightly reduced.
Additionally, by analogy with the ideal case, for which in
the largest tuning range is obtained when the actuator
becomes completely flat at the maximum voltage, one would
expect to see the actuation angle being maximized when the
final angle reaches θc. However, this is not the case (figure 13).
Taking the same μ40 m membrane as before (cf section 3.2),
the optimal prestretch is now 1.66. The energy landscape
predicts an initial bending angle at 0 V of °93 and a maximal

actuation range of °38 for an activated angle of °55 , thus
larger than θc. However, unlike the perfect frame situation, the
total energy at the maximum voltage is not flat around the
equilibrium point, leading to a non-zero spring constant and
an actuator much less sensitive to external perturbation in its
activated state. A comparison of the parameters obtained for
the ideal and creep cases is given in table 2 .

One of the most important impacts of creep on the
behaviour of a DEMES actuator is that its performance can
change with time. For example, a DEMES can be designed

Figure 10. PET frames rolled around a post and left for one night at
°80 (left) exhibited a significant creep when released from the post

(right).

Figure 11. Stress relaxation test for the silicone Dow Corning
Sylgard 186. The ×110 10 mm2 sample is stretched in pure shear to
two different stretch values: λ = 2.5 and λ = 3 in 1 second, and held
in this position. A relatively small stress relaxation of about 6 % is
observed, but a steady-state value is achieved after a few tens of
seconds.

Figure 12. Actuation angle (difference between bending angle at 0 V
and at Vmax) for a creep angle θ = °20c . The black star represents the
same device than on figure 7 ( μ40 m, prestretch of 1.86), which is an
optimal combination in the absence of creep. When creep is taken
into account, the chosen thickness/prestretch combination does not
correspond to the optimum anymore.

Figure 13. Energy landscape for a creep angle of θ = °20c for a
μ40 m membrane at the optimal prestretch (λ = 1.66p ). The red dots

indicate the energy minima.
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